

Accelerating Scientific Workflows on HPC Platforms with In Situ Processing

Loïc Pottier

University of Southern California, School of Engineering Information Sciences Institute Ipottier@isi.edu

Outline

- Context
- General Approach
- Experimental Setup
- Experimental Results
- ► Conclusion

Context

Scientific Workflows

- Workflows represented as directed acyclic graphs (DAG)
- Workflow management systems (WMS) execute workflows on distributed resources
- Vast majority of WMS uses files to communicate between jobs

Set of jobs executed in a given order based on their data dependencies

Why in situ matters

- From post-processing to iterative processing
- Popular in molecular dynamics for example
- Simulations send data every k iterations to some analysis kernels

In situ helps overcome I/O bottlenecks (slow filesystems etc)

Goals

- WMSs use file-based I/Os with loosely-coupled jobs (HTC model)
- In situ frameworks often rely on in-memory computing
- Minimize code modifications of existing workflows

How to integrate in situ technology with traditional WMS? \Rightarrow job clustering

General Approach

Pegasus and Decaf

Pegasus

- Workflow management system, runs static DAGs
- Well-established WMS (started in 2001)
- Relies on HTCondor for its execution back-end
- Pegasus relies on files to synchronize jobs

Decaf

- Middleware for building and executing in situ workflows (from ANL)
- Producer/consumer model using MPI communicators (point to point)
- Multiple-program-multipledata (MPMD) model

Job Clustering

- Users express their computations using the Pegasus API
- ► Job clustering:
 - Cluster jobs with the pegasus-mpi-cluster (PMC) engine
 - Users simply **annotate the jobs** that have to be clustered together
- Pegasus automatically infers the correct Decaf/PMC representation and creates the appropriate workflow representation

Integration

Experimental Setup

11

https://pegasus.isi.edu

Platform

- Cori at National Energy Research Scientific Computing Center (NERSC)
- Cray XC40 with:
 - 2 Intel Xeon E5-2698 v3 (16 cores each)
 - 128 GB of DRAM
 - Cray Aries interconnection network
- **Only** CPU nodes in this work
- Pegasus submits to Slurm

SyntheticlO

- ► Each job **reads/writes** a file of x GB ($x \in \{1, 2, 4, 8, 16\}$)
- Each job **sleeps** for 2 seconds per GB written
- We cluster all jobs together (one cluster)

Figure 3: SYNTHETICIO with 5 jobs, each job reads/writes a file of x GB ($x \in \{1, 2, 4, 8, 16\}$).

Genome

Figure 4: GENOME workflow with N chromosomes and k Ind jobs per chromosome and P super populations (N = 1 and P = 7 in this study).

Execution time breakdown for Genome

	Execution Time (s)	Fraction (%)
Job		
Ind	11,431	81.85
Frequency	1,492	10.68
Ind _{Merge}	500	3.58
Mutation_Overlap	468	3.35
Stage_Out	34	0.24
Stage_In	21	0.15
<i>Auxiliary</i> ¹	16	0.11
Sifting	6	0.05
Total ²	($pprox$ 3.9h) 13,967	100

¹ Internal jobs managed by Pegasus.

 2 Total execution time is not the makespan of the workflow, it is simply the sum of all job execution times.

Table 1: Execution time breakdown within GENOME with k = 10 *individuals* jobs and 1 chromosome. This instance has been executed using Cori at NERSC.

I/O characteristics for Inds jobs

# of Ind (k)	Input per <i>Ind</i> (lines)	Output size per <i>Ind</i> (MB)	Peak Mem. per <i>Ind</i> (GB)
2	125,000	92.66 (\pm 1.88e-04)	$6.11(\pm 1.76$ e-05)
5	50,000	$39.43(\pm 2.28e-04)$	$3.95(\pm7.94 ext{e-06})$
10	25,000	$21.19(\pm 9.90$ e-04)	3.25 (±7.94e-06)
16	15,625	$10.33(\pm 1.41e-04)$	2.93 (±1.49e-04)

Table 2: I/O characteristics of *Ind* jobs in GENOME (2, 504 files/job). Each value is the result of 3 trials.

Job clustering for Genome

Execution scenarios

- Vanilla: Baseline scenario, no job clustering and file-based communications
- PMC: Leverages Pegasus-MPI-Cluster (PMC) to execute portion of the workflow (sub-workflow)
- PegDecaf: Leverages Decaf (MPI communications) to execute portion of the workflow

Experimental Results

SyntheticlO

⁽a) Normalized makespan over $\ensuremath{\mathsf{VANILLA}}$ without sleep

(b) Normalized makespan over VANILLA with sleep (2 seconds per GB)

Genome – Strong scaling

Figure 6: Normalized makespan and speedup of GENOME with 1 chromosome.

Genome – Weak scaling

Each Ind job runs on one dedicated node

Figure 7: Weak scaling study of GENOME where each *Ind* processes 5,000 lines.

Conclusion

Conclusion

Summary

- In situ communications improves the makespan of data-intensive workflows
- Larger improvements when communications can be overlapped with computations
- Job clustering improve wall time thanks to less submissions
- But ... which jobs should be clustered together?

Future Work

- Release Decaf support in the next version of Pegasus
- Develop heuristics to determine appropriate clusters
- Extend experiments to larger workflows with in situ components (e.g., MD)

