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Scientific Workflows
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» Workflows represented as directed acyclic
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» Workflow management systems (WMS)
execute workflows on distributed resources o ] .. ][] s

» Vast majority of WMS uses files to

communicate between jobs Par (WYL N - Frequency
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» Set of jobs executed in a given order based on their data dependencies
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Why in situ matters 25

» From post-processing to iterative processing

» Popular in molecular dynamics for example

» Simulations send data every k iterations to

some analysis kernels Main Memory (DRAM)

Burst Buffers (SSD)

Disks (HDD)

» In situ helps overcome I/0 bottlenecks (slow filesystems etc)
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Goals

» WMSs use file-based 1/0s with loosely-coupled jobs (HTC model)

» In situ frameworks often rely on in-memory computing

» Minimize code modifications of existing workflows

How to integrate in situ technology with traditional WMS?
= job clustering
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USC

Pegasus and Decaf

» Workflow management system, runs
static DAGs

» Well-established WMS (started in
2001)

» Relies on HTCondor for its execution
back-end

» Pegasus relies on files to
synchronize jobs
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» Middleware for building and
executing in situ workflows
(from ANL)

» Producer/consumer model
using MPl communicators
(point to point)

» Multiple-program-multiple-
data (MPMD) model




Job Clustering

» Users express their computations using the Pegasus API

» Job clustering:

» Cluster jobs with the pegasus-mpi-cluster (PMC) engine

» Users simply annotate the jobs that have to be clustered together

» Pegasus automatically infers the correct Decaf/PMC representation and creates the
appropriate workflow representation

USC
Viterbi
e https://pegasus.isi.edu



USC
Viterbi

Integration
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Platform

» Cori at National Energy Research Scientific Computing Center (NERSC)
» Cray XC40 with:

» 2 Intel Xeon E5-2698 v3 (16 cores each)
» 128 GB of DRAM
» Cray Aries interconnection network

» Only CPU nodes in this work

» Pegasus submits to Slurm
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SyntheticlO

» Each job reads/writes a file of x GB (x € {1, 2, 4, 8, 16})

» Each job sleeps for 2 seconds per GB written

» We cluster all jobs together (one cluster)

0 _ 0

Figure 3: SYNTHETICIO with 5 jobs, each job reads/writes a file of x GB (x € {1,2,4,8,16}).
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Genome

O Individuals O Sifting O Frequency

O Individuals_merge O Mutation_overlap — File 1/Os

Chromosome 1 Chromosome N

Figure 4: GENOME workflow with N chromosomes and k Ind jobs per chromosome and P super
populations (N = 1 and P = 7 in this study).
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Execution time breakdown for Genome

Execution Time (s)  Fraction (%)

Job

Ind 11,431 81.85
Frequency 1,492 10.68
Indpjerge 500 3.58
Mutation__Overlap 468 3.35
Stage_ Out 34 0.24
Stage__In 21 0.15
Auxiliary! 16 0.11
Sifting 6 0.05
Total? (=~ 3.9h) 13,967 100

! Internal jobs managed by Pegasus.
2 Total execution time is not the makespan of the workflow, it is simply
the sum of all job execution times.

Table 1: Execution time breakdown within GENOME with k = 10 individuals jobs and
1 chromosome. This instance has been executed using Cori at NERSC.
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I/0 characteristics for Inds jobs

# of Ind (k) Input per Ind (lines) Output size per Ind Peak Mem. per Ind
(MB) (GB)
2 125, 000 92.66 (+1.88e-04) 6.11 (+1.76e-05)
5 50, 000 39.43 (£2.28e-04) 3.95 (47.94e-06)
10 25, 000 21.19 (£9.90e-04) 3.25 (47.94e-06)
16 15, 625 10.33 (£1.41e-04) 2.93 (£1.49e-04)

Table 2: 1/O characteristics of Ind jobs in GENOME (2, 504 files/job). Each value is the result of
3 trials.
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Job clustering for Genome
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Execution scenarios

» Vanilla: Baseline scenario, no job clustering and file-based communications

» PMC: Leverages Pegasus-MPI-Cluster (PMC) to execute portion of the workflow
(sub-workflow)

» PegDecaf: Leverages Decaf (MPI communications) to execute portion of the
workflow
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Genome - Strong scaling
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Figure 6: Normalized makespan and speedup of GENOME with 1 chromosome.
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Genome - Weak scaling

» Each Ind job runs on one dedicated node
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(b) Weak scaling efficiency

Figure 7: Weak scaling study of GENOME where each Ind processes 5, 000 lines.
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Conclusion
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In situ communications improves the

makespan of data-intensive workflows version of Pegasus

Larger improvements when
communications can be overlapped
with computations

Job clustering improve wall time thanks

to less submissions
But ... which jobs should be clustered

together?

/

PE9aAsus

» Release Decaf support in the next

» Develop heuristics to determine
appropriate clusters

» Extend experiments to larger
workflows with in situ components
(e.g., MD)
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