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Outline

1. Motivations and Background
2. Contributions :

a. Modeling framework for in situ workflows
b. Performance indicators to determine performance of workflow ensembles 

3. Conclusion
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Molecular dynamics (MD)

• Molecular dynamics (MD) is a simulation model computing 
the atomic states of a molecular system evolving over time 
by observing interactions between atoms

• MD serves as a productive method to: 
– Control the configurations of the molecular systems
– Observe important processes at atomic resolution
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Human dopamine transporter (hDAT)

Razavi et al, 2017

Na+/Na2 ionProtein backbone

Utilization 
breakdown on 
XSEDE 
machines for the 
period 2011-07 
to 2017-09. 
(Simakov et al., 
2018)



Traditional MD analysis
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• The increase in computing capability helps the MD simulations generate more data that 
needs to be analyzed (150,000 atoms + 500,000 snapshots would generate ~ 1.8TB data )

• However, the I/O bandwidth does not grow at the same pace →  I/O bottleneck  
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I/O stagnant on contemporary leadership computers. (Johnston et al., 2017)

I/O limitations

Increasing Stagnant



In situ analysis

• Data is analyzed as soon as generated 
• Decoupling analysis from the simulation to interleave their executions → Reduce time-to-solution 
• Study insights into phenomena of the molecular system in a timely fashion
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Data staging
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Placement variants
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In situ framework design

Problem: How to enable in situ execution of simulations and analyses?

Challenges/complexities:
• Decoupling analyses from the simulation to perform in situ requires to manage data 

staging to additional concurrent components
• Orchestrating data coupling over iterations
• Data incompatibility between decoupled components (simulations, analyses)

We model/design a framework that allows to decouple in situ analyses from the simulation to 
address these complexities:

- Data staging, coupling → Data transport layer
- Data compatibility → Data abstraction
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In situ Workflow Runtime

DTL plugin

In-memory DTL

DTL plugin

Data chunk abstraction

In situ framework implementation
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• Two main components: 
– Data transport layer (DTL) provides 

interfaces to support different storage 
tiers

– DTL plugins interact with the DTL via 
data chunk abstraction for compatibility

• In this work
– The DTL is implemented with the help 

of DIMES (Zhang et al., 2017) to enable 
in-memory data staging

– The DTL plugin is integrated with 
Plumed (Tribello et al., 2014) to offer 
non-intrusive approach

Memory Memory

Simulation Analysis



MD simulation ensemble
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Source: Vincent Voelz Gorup - CC 
BY-SA 3.0,  http://www.voelzlab.org/ 

An ensemble of MD simulations allows 
sampling wider configurational space 

MD short 
simulations High barrier problem prevents broadening 

the conformational sampling to reach 
interesting molecular events



In situ Workflow Ensembles
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Performance indicators for in situ workflow 
ensembles

Problem: How to evaluate performance of an in situ workflow ensembles?

Challenges:
• Using traditional metrics and capturing them separately are not straightforward to 

synthesize performance of entire workflow ensemble
• Need to take into account resources to characterize performance under resource cost 

We introduce multi-stage performance indicators that capture performance of the entire in situ 
workflow ensembles in terms of multiple resource perspectives

– Resource usage: How efficiently the resource is utilized?
– Resource allocation: How efficiently the simulations, analyses are placed on allocated 

resources?
– Resource provisioning: How many resources are provisioned to execute efficiently?
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Experiment setup

• Execution platform: Cori, a Cray XC40 supercomputer at NERSC. Each compute node is equipped with 
– 2 Intel Xeon E5-2698 v3 (16 cores each) 
– 128 GB of DRAM

• TAU (Shende et al., 2006)  is leveraged to collect performance information
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Simulations Analyses

Collective variable (largest eigenvalue of 
bipartite distance matrices between two 
substructures) (Barducci 2011, Johnston 

2017)

Medium-scale all-atom system 
containing the GltPh transporter 
protein (Akyuz 2015) implemented in 
GROMACS (P Bjelkmar et al., 2010)



One analysis per simulation

➔ 𝐶1.5 outperforms other 
configurations, which validates the 
benefit of co-locating coupled 
components
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Takeaways

• The proposed indicators can be leveraged for evaluating scheduling decision of in situ 
ensemble under resource constraints

• Provide hints to improve effectiveness of resource usage → optimizing simulation 
exploration by running many MD simulations at a time 

• Future work will consider leveraging the proposed indicators for scheduling in situ 
components of a workflow ensemble to enable high-throughput ensemble of simulations
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In-line in situ analysis 

• Data is analyzed as soon as generated
• The simulation and analysis interchangeably execute
• Analysis needs to be embedded in simulation code
• Less robust
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•

In situ step 5
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Simulation step 4

Analysis step 4



Efficiency model

• Computing in situ step is lightweight and can be performed online 
• In situ step is leveraged to estimate:

1. Makespan: duration of an in situ step x number of in situ steps - overlapped part 
between in situ steps

2. Useful computation: measured by time for computation except idle time during 
an in situ step

• Evaluate computational efficiency: 
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Maximize 
→ Minimize idle time 

→ Minimize makespan 



Characterization challenges
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• Evaluating each ensemble 
component/member exclusively is hard to:
– Generate a full picture of the workflow 

ensemble performance
– Compare between different 

executions/configurations

• Without taking into account resources, the 
performance could be misleading

C1.4 & C1.5 use fewer 
nodes than other 
configurations



Component placement

• The simulation is co-located with the analysis, iff
• The simulation and analysis are assigned to different nodes, iff 
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Set of node indexes where a 
simulation is executed

Set of node indexes where the 
coupled analysis is executed  Mean of ratios forming by all (simulation, analysis) pairs 

Placement indicator of ensemble member i with          
analyses

Maximize placement indicator prioritizes placements that minimize 
the number of computing resources (number of compute nodes) 

used by that ensemble member.



Performance indicator       of ensemble member i

Resource 
usage (U)
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Resource 
allocation (A)

Resource 
Provisioning (P)

2nd stage

1st stage

Total number of cores used by ensemble member i

Total number of compute nodes 
used by all ensemble members

Efficiency of single core usage

Efficiency of allocating ensemble components

Minimizing resources provisioned

Placement indicator

3rd stage
Resource allocation (A) and resource 

provisioning (P)  can be used interchangeably



Synthesis of performance indicators

•     can be either 
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Standard deviation → ← MeanMaximize average performance 
of ensemble members 

Minimize variability 
among ensemble members  

Maximize

• The objective function of N ensemble members (the higher the better)



Two analyses per simulation
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