
Pegasus Workflow
Management System

Mats Rynge George Papadimitriou Ewa Deelman
rynge@isi.edu georgpap@isi.edu deelman@isi.edu

https://pegasus.isi.edu

Pegasus

Outline

• Pegasus overview
• User Stories
• More Pegasus features
• Pegasus in OpenShift

2

Automate

Recover

Debug

Why Pegasus?

Automates complex, multi-stage processing pipelines

Enables parallel, distributed or remote computations

Automatically executes data transfers

Reusable, aids reproducibility

Records how data was produced (provenance)

Handles failures with to provide reliability

Keeps track of data and data integrity

NSF funded project since 2001, with close

collaboration with HTCondor team

Pegasus

Key Pegasus Concepts

Pegasus WMS == Pegasus planner (mapper) + DAGMan workflow engine +
HTCondor scheduler/broker

Pegasus maps workflows to infrastructure
DAGMan manages dependencies and reliability
HTCondor is used as a broker to interface with different schedulers

Workflows are DAGs (Directed Acyclic Graphs)
Nodes: jobs, edges: dependencies
No while loops, no conditional branches
Jobs are standalone executables

Planning occurs ahead of execution

Planning converts an abstract workflow into a concrete, executable workflow
Planner is like a compiler

4

Pegasus 5

cleanup job
Removes unused data

stage-in job

stage-out job

registration job

Transfers the workflow input data

Transfers the workflow output data

Registers the workflow output data

DAGdirected-acyclic graphsDAG in XML
Portable Description

Users do not worry about
low level execution details

abstract
workflow

executable
workflow

transformation
executables (or programs)
platform independent

logical filename (LFN)
platform independent (abstraction)

Pegasus 6

Pegasus also provides tools to generate the abstract workflow…

DAG in XML

PegasusPegasus 7

So, what information does Pegasus need?

Site Catalog
describes the sites

where the workflow
jobs are to be executed

Transformation Catalog
describes all of the executables
(called “transformations”) used
by the workflow

Replica Catalog
describes all of the
input data stored on
external servers

Pegasus

Pegasus

Campus
Cluster HPC/HTC Clouds

WAN LAN

Running Pegasus workflows with Jupyter

Pegasus 8

Pegasus 9Pegasus

command-line…

Provenance data can be summarized
pegasus-statistics

or used for debugging
pegasus-analyzer

$ pegasus-status pegasus/examples/split/run0001
STAT IN_STATE JOB
Run 00:39 split-0 (/home/pegasus/examples/split/run0001)
Idle 00:03 ┗━split_ID0000001
Summary: 2 Condor jobs total (I:1 R:1)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
14 0 0 1 0 2 0 11.8 Running *split-0.dag

$ pegasus-statistics –s all pegasus/examples/split/run0001
--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 5 0 0 5 0 5
Jobs 17 0 0 17 0 17
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 2 mins, 6 secs
Workflow cumulative job wall time : 38 secs
Cumulative job wall time as seen from submit side : 42 secs
Workflow cumulative job badput wall time :
Cumulative job badput wall time as seen from submit side :

$ pegasus-analyzer pegasus/examples/split/run0001
pegasus-analyzer: initializing...

****************************Summary***************************

Total jobs : 7 (100.00%)
jobs succeeded : 7 (100.00%)
jobs failed : 0 (0.00%)
jobs unsubmitted : 0 (0.00%)

>_

PegasusPegasus 10

Pegasus
dashboard

web interface for monitoring
and debugging workflows

Real-time monitoring of
workflow executions. It shows

the status of the workflows and
jobs, job characteristics, statistics

and performance metrics.
Provenance data is stored into a

relational database.

Real-time Monitoring
Reporting
Debugging

Troubleshooting
RESTful API

Pegasus 11

User Stories

First gravitational wave detection:
21k Pegasus Workflows

107M tasks

PyCBC Executed on LIGO Data Grid,
Open Science Grid and XSEDE

Probabilistic Seismic Hazard Analysis (PSHA)
• What will peak earthquake shaking be over the next 50 years?

• Useful information for:
• Building engineers
• Disaster planners
• Insurance agencies

• PSHA performed by
1. Assembling a list of earthquakes
2. Determining how much shaking each event causes
3. Combining the shaking levels with probabilities

5/12/2020 Southern California Earthquake Center 13

2% in 50
yrs

0.4 g

SCEC CyberShake Project
• 3D physics-based platform for PSHA

• For each site of interest:
• Determine nearby (<200 km) earthquakes
• Add variability to earthquakes
• Simulate each of 500,000 earthquakes
• Determine maximum shaking from each
• Combine with probabilities to produce curve

• Repeat process for multiple locations

• Continual improvement since 2007

5/12/2020 Southern California Earthquake Center 14

CyberShake Study 18.8 Metrics

Southern California Earthquake Center 15

• Study conducted over 128 days
• Consumed 6.2 million node-hours

(120M core-hours/13,650 core-years)
• Averaged 2,018 nodes / 38,850 cores
• Max of 16,219 nodes / 279,984 cores

• Ran 21,220 jobs at USC, 10,308 at Blue
Waters, and 7,757 jobs at Titan

• 1.2 PB of data generated
• 157 TB of data automatically transferred
• 14.4 TB of final data products staged to USC HPC

• Simulated 203 million seismograms
• 30.4 billion shaking values

Study
15.4

Study 17.3

Study 18.8

Pegasus

Enabled cutting-edge domain science (e.g., drug
delivery) through collaboration with scientists at
the DoE Spallation Neutron Source (SNS) facility

A Pegasus workflow was developed that
confirmed that nanodiamonds can enhance the
dynamics of tRNA

It compared SNS neutron scattering data with
MD simulations by calculating the epsilon
that best matches experimental data

Ran on a Cray XE6 at NERSC using 400,000 CPU
hours, and generated 3TB of data.

Water is seen as small red and
white molecules on large

nanodiamond spheres. The
colored tRNA can be seen on

the nanodiamond surface.
(Image Credit: Michael

Mattheson, OLCF, ORNL)

An automated analysis workflow for optimization of force-field parameters using
neutron scattering data. V. E. Lynch, J. M. Borreguero, D. Bhowmik, P. Ganesh, B. G.

Sumpter, T. E. Proffen, M. Goswami, Journal of Computational Physics, July 2017.

Impact on DOE Science

16

XENONnT - Dark Matter Search

Main processing pipeline for XENONnT

Detector at Laboratori Nazionali del Gran Sass (LNGS) in Italy. Data is
distributed world-wide with Rucio. Workflows execute across Open
Science Grid (OSG) and European Grid Infrastructure (EGI)

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 4000 0 0 4000 267 4267
Jobs 4484 0 0 4484 267 4751
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 5 hrs, 2 mins
Cumulative job wall time : 136 days, 9 hrs
Cumulative job wall time as seen from submit side : 141 days, 16 hrs
Cumulative job badput wall time : 1 day, 2 hrs
Cumulative job badput wall time as seen from submit side : 4 days, 20 hrs

Pegasus 18

More Pegasus features…

PegasusPegasus 19

And if a job fails?

Job Failure Detection
detects non-zero exit code

output parsing for success or failure message
exceeded timeout

do not produced expected output files

Job Retry
helps with transient failures
set number of retries per job and run

Rescue DAGs
workflow can be restarted from checkpoint file
recover from failures with minimal loss

Checkpoint Files
job generates checkpoint files

staging of checkpoint files is
automatic on restarts

PegasusPegasus 20

Performance, why not improve it?

clustered job
Groups small jobs together
to improve performance

task
small granularity

workflow restructuring

workflow reduction

pegasus-mpi-cluster

hierarchical workflows

PegasusPegasus 21

What about data reuse?

data already
available

Jobs which output data is
already available are pruned
from the DAG

data reuse

workflow restructuring

workflow reduction

pegasus-mpi-cluster

hierarchical workflows

workflow
reduction

data also
available

data reuse

Pegasus 22

Pegasus also handles large-scale workflows

pegasus-mpi-cluster

recursion ends
when DAX with
only compute jobs
is encountered

sub-workflow

sub-workflow

workflow restructuring

workflow reduction

hierarchical workflows

Pegasus

PegasusPegasus 23

Running fine-grained workflows on HPC systems…

pegasus-mpi-cluster

HPC System
submit host

workflow wrapped as an MPI job
Allows sub-graphs of a Pegasus workflow to be

submitted as monolithic jobs to remote resources

workflow restructuring

workflow reduction

hierarchical workflows

Pegasus 24

Pegasus in OpenShift

Pegasus https://panorama360.github.io/

• GitHub:
https://github.com/Panorama360

• Website:
https://panorama360.github.io

email: georgpap@isi.edu

George Papadimitriou
Computer Science PhD Student
University of Southern California

https://github.com/Panorama360
https://panorama360.github.io/

Pegasus 26

Special thanks to the OLCF people that helped us make this deployment happen !

Acknowledgements

Jason Kincl
kincljc@ornl.gov

Valentine Anantharaj
anantharajvg@ornl.gov

Jack Wells
wellsjc@ornl.gov

This work was funded by DOE contract number DESC0012636, ``Panorama---Predictive Modeling and Diagnostic Monitoring of Extreme
Science Workflows'', and U.S. Department of Energy, Office of Science under contract DE-AC02-06CH11357.

This work used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725.

mailto:kincljc@ornl.gov
mailto:anantharajvg@ornl.gov
mailto:wellsjc@ornl.gov

Pegasus 27

Kubernetes: Why it can be useful in HPC

• Running services on login nodes can be cumbersome (build from scratch, compile all
dependences etc.) and sometimes prohibited by the system administrators.

• Maintaining an application/service up to day is easier
• Assist workflow execution

• Create submission environments
• Handle data movement and job submissions
• Automation and Reproducibility

• Create collaborative web portals
• Jupyter Notebooks
• Workflow Design (e.g. Wings)

• Streaming Data
• Consuming
• Publishing

Pegasus 28

Kubernetes (OpenShift) at OLCF

• OLCF has deployed OpenShift, a distribution of Kubernetes
developed by RedHat

• OpenShift provides a command line and a web interface to
manage your Kubernetes objects (pods, deployments,
services, storage etc.)

• OLCF’s deployment has automation mechanisms that allow
users to submit jobs to the batch system and access the
shared file systems (NFS, GPFS)

• All containers run as an automation user that is tied to a
project

Reference:
https://www.olcf.ornl.gov/wp-content/uploads/2017/11/2018UM-Day3-Kincl.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2017/11/2018UM-Day3-Kincl.pdf

Pegasus 29

Kubernetes (OpenShift) at OLCF: Pegasus Deployment

Pegasus 30

Kubernetes at OLCF: Pegasus Deployment - Advantages

• Pegasus workflow environments at OLCF have been simplified.

• Using the Kubernetes cluster at OLCF, we can deploy Pegasus submit nodes as
services, within a few seconds.

• The deployment uses HTCondor’s BOSCO SSH style submissions on the DTNs and
achieves submissions to the SLURM and LSF batch schedulers.

• This approach allows a single workflow to be configured to use all of OLCF’s
resources. E.g. Execute transfers on the DTNs, run simulations and heavy
processing on Summit and then do lightweight post processing steps on RHEA.

Pegasus 31

How to Deploy: Prerequisites

• Pegasus Kubernetes Templates for OLCF:

• https://github.com/pegasus-isi/pegasus-olcf-kubernetes

• OpenShift’s Origin Client:

• https://github.com/openshift/origin/releases

• A working RSA Token to access OLCF’s systems

• An automation user for OLCF’s systems

• Allocation on OLCF’s OpenShift Cluster (https://marble.ccs.ornl.gov)

https://github.com/pegasus-isi/pegasus-olcf-kubernetes
https://github.com/openshift/origin/releases

Pegasus 32

How to Deploy: Pegasus - Kubernetes Templates

• bootstrap.sh Generates customized Dockerfile and Kubernetes pod and service specifications for
your deployment.

• Specs/pegasus-submit-build.yml Contains Kubernetes build specification for the pegasus-olcf
image.

• Specs/pegasus-submit-service.yml Contains Kubernetes service specification that can be used
to spawn a Nodeport service that exposes the HTCondor Gridmanager Service running in your
submit pod, to outside world.

• Specs/pegasus-submit-pod.yml Contains Kubernetes pod specification that can be used to
spawn a pegasus/condor pod that has access to Summits's GPFS filesystem and its batch
scheduler.

Pegasus 33

How to Deploy: Customize Templates

In bootstrap.sh update the section "ENV Variables For User and Group"
with your automation user's name, id, group name, group id and the
Gridmanager Service Port, which must be in the range 30000-32767.

Replace the highlighted text:
• USER: with the username of your automation user (eg. csc001_auser)
• USER_ID: with the user id of your automation user (eg. 20001)
• USER_GROUP: with the project name your automation user belongs

to (eg. csc001)
• USER_GROUP_ID: with the project group id your automation user

belongs to (eg. 10001)
• GRIDMANAGER_SERVICE_PORT: with the Kubernetes Nodeport port

number the Gridmanager Service should use (eg. 32752)

Execute Script:

Pegasus

Pegasus in OpenShift: Status

G. Papadimitriou, K. Vahi, J. Kincl, V. Anantharaj, E. Deelman, and J. Wells,
“Workflow Submit Nodes as a Service on Leadership Class Systems,” in Proceedings
of the Practice and Experience in Advanced Research Computing, New York, NY,
USA, 2020. (Funding Acknowledgments: DOE DESC0012636)

Might seem complicated, but only 6 easy steps:

https://pegasus.isi.edu/tutorial/summit/

34

https://pegasus.isi.edu/tutorial/summit/

Pegasus
Automate, recover, and debug scientific computations.

Get Started

Pegasus Website
https://pegasus.isi.edu

Users Mailing List
pegasus-users@isi.edu

Support
pegasus-support@isi.edu

Pegasus Online Office Hours
https://pegasus.isi.edu/blog/online-pegasus-office-hours/

Bi-monthly basis on second Friday of
the month, where we address user
questions and also apprise the
community of new developments

Pegasus 36

Extra Slides

Pegasus 37

Kubernetes: Brief Overview

• Kubernetes is an open-source platform for running
and coordinating containerized application across
a cluster of machines.

• It can be useful for:
• Orchestrating containers across multiple hosts
• Control and automate deployments
• Scale containerized applications on the fly
• And more…

• Key objects in the Kubernetes architecture are:
• Master: Controls Kubernetes nodes – assign tasks
• Node: Perform the assigned tasks
• Pod: A group of one or more containers deployed on a single node
• Replication Controller: Controls how many copies of a pod should be running
• Service: Allow pods to be reached from the outside world
• Kubelet: Runs on the nodes and starts the defined containers

Reference:
https://www.redhat.com/en/topics/containers/what-is-kubernetes

https://www.redhat.com/en/topics/containers/what-is-kubernetes

Pegasus 38

Kubernetes: Configuring Objects

• Within Kubernetes, specification files describe the
applications, services and objects being deployed

• Specification files can be written in YAML and JSON
formats and can be used to

• Deploy Pods
• Create and mount volumes
• Expose services etc.

Reference:
https://kubernetes.io/docs/tasks/configure-pod-container/

https://kubernetes.io/docs/tasks/configure-pod-container/

Pegasus 39

Kubernetes: Pods
• A Pod is the basic execution unit of a Kubernetes

application
• Pods represent processes running on the cluster
• One can have one or multiple containers running

within a Pod.

• Networking: Each Pod is assigned a unique IP
address within the cluster

• Storage: A Pod can specify a set of shared storage
Volumes. Volumes persist data and allow Pods to
maintain state between restarts.

• Lifecycle: A Pod starts running on its assigned
cluster-node until the container(s) exit or it is
removed for some other reason (e.g. user deletes it).

References:
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/storage/volumes/

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/storage/volumes/

Pegasus 40

Kubernetes: Services

• A Service provides an abstract way to expose an
application running on a set of Pods as network
service to the rest of the world

• Since Pods are ephemeral, services allow users to
access the backend applications via a common way

• Service types are:
• ClusterIP: Exposes the service on a cluster-

internal IP
• NodePort: Exposes the service on each Node’s

IP at a static port
• LoadBalancer: Exposes the service externally

and loadbalances it
• ExternalName: Maps the service to a name,

returns a CNAME record Reference:
https://kubernetes.io/docs/concepts/services-networking/service/

Backend Pod 1 Backend Pod 2 Backend Pod 3

Client kube-proxy

apiserver

clusterIP
(Virtual Server)

Node

(Real Server)

https://kubernetes.io/docs/concepts/services-networking/service/

Pegasus 41

How to Deploy
We will follow the tutorial: https://pegasus.isi.edu/tutorial/summit/tutorial_setup.php

https://pegasus.isi.edu/tutorial/summit/tutorial_setup.php

Pegasus 42

How to Deploy: Useful Origin Client Commands

• oc login: acquires an access token, authenticate against a cluster

• oc status: returns/prints the status of your deployments

• oc describe: shows details of a specific resource

• oc create: creates a Kubernetes resource from specification

• oc start-build: initiates the creation of a container image

• oc logs: returns/prints the Kubernetes log for a resource

• oc exec: executes a command in a container

• oc delete: deletes a resource

Pegasus 43

How to Deploy: Acquire an Access Token (Step 1)

Pegasus 44

How to Deploy: Build the Container Image (Step 2)
Create a new build and build the image:

1

2

Pegasus 45

How to Deploy: Build the Container Image (Step 2)
Trace the progress of the build:

Pegasus 46

How to Deploy: Start the Kubernetes Service (Step 3)
Start a Kubernetes Service that will expose your pod’s services:

Note: In case this step fails, go back to the bootstrap.sh change the
service port number and execute it again.
Proceed from this step, there is no need to rebuild the container.

Pegasus 47

How to Deploy: Start the Pegasus Pod (Step 4)
Start a Kubernetes Pod with Pegasus and HTCondor:

Logon to the Pod:

Pegasus 48

How to Deploy: Configuring for Batch Submissions (Step 5)
If this is the first time you bringing up the Pegasus container in Kubernetes we need to
configure it for batch submissions.

In the shell you got on the previous step execute:

Note: This script installs some additional files needed to operate on OLCF, and prepares the environment
on the DTNs, by installing BOSCO.

Pegasus 49

How to Deploy: Check the status of the deployment
If all goes well you should see something similar to this in your terminal:

Pegasus 50

How to Deploy: Deleting the Pod and the Service

Deleting the Pod:

Deleting the Service:

Deleting the container image:

	Slide Number 1
	Outline
	Slide Number 3
	Key Pegasus Concepts
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Running Pegasus workflows with Jupyter
	Slide Number 9
	Slide Number 10
	User Stories
	Slide Number 12
	Probabilistic Seismic Hazard Analysis (PSHA)
	SCEC CyberShake Project
	CyberShake Study 18.8 Metrics
	Impact on DOE Science
	Slide Number 17
	More Pegasus features…
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Pegasus in OpenShift
	Slide Number 25
	Slide Number 26
	Kubernetes: Why it can be useful in HPC
	Kubernetes (OpenShift) at OLCF
	Kubernetes (OpenShift) at OLCF: Pegasus Deployment
	Kubernetes at OLCF: Pegasus Deployment - Advantages
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Pegasus in OpenShift: Status
	Slide Number 35
	Extra Slides
	Kubernetes: Brief Overview
	Kubernetes: Configuring Objects
	Kubernetes: Pods
	Kubernetes: Services
	How to Deploy
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50

