
Custom Execution Environments with Containers
in Pegasus-enabled Scientific Workflows

Karan Vahi*, Mats Rynge*, George Papadimitriou*, Duncan Brown¶,

Rajiv Mayani*, Rafael Ferreira da Silva*, Ewa Deelman*,

Anirban Mandal$, Eric Lyons§, Michael Zink§

*USC Information Sciences Institute
¶Syracuse University

$RENCI
§University of Massachusetts Amherst

Motivation Reproducibility for Workflows

Containers Solution for Reproducibility

Challenges deploying for

Distributed Workflows

Design Considerations

Pegasus Introduction

Container Support

Experiments Setup

Results

Outline

Pegasus 1https://pegasus.isi.edu

What are workflows?
• Allows scientists to connect different codes together and

execute their analysis

• Workflows can be very simple (independent or parallel) jobs
or complex represented usually as DAG’s

• Workflows are DAGs

• Nodes: jobs, edges: dependencies

• No while loops, no conditional branches

• Jobs are standalone executables

• Helps users to automate scale up

2Pegasus

Reproducibility in Scientific Workflows

• Why?

• Ease of Use and Portability

• Don’t limit the execution environments

• Ideally, users can reliably recreate your analysis on varied execution
environments

• Local Desktop (Windows, Linux, MACOS)

• Local HPC Cluster (Mainly Linux oriented)

• Computing Grids (Collection of University HPC clusters, such as OSG)

• Leadership Class HPC Systems (Linux variants like Cray)

• Cloud Environments (Choice of OS and architectures available)

3Pegasus

Challenges to Reproducibility?

Custom Execution Environments

• When you start using shared resources you loose control over the hardware and OS

• Hard to ensure homogeneity: Users will run your code on same platform/OS it was
developed on.

• Some dependent libraries required for your code may conflict with system installed
versions

• TensorFlow requires specific python libraries and versions.

• Some libraries maybe easy to install on latest Ubuntu, but not on EL7

• If running on shared computing resources such as computational grids

• you run on a site with heterogeneous nodes and your job lands on a node where OS
is incompatible with your executable

4Pegasus

Motivation Reproducibility for Workflows

Containers Solution for Reproducibility

Challenges deploying for

Distributed Workflows

Design Considerations

Pegasus Introduction

Container Support

Experiments Setup

Results

Outline

Pegasus 5https://pegasus.isi.edu

Solutions: Containers
• Virtualizes the OS instead of the Hardware

• Sits on top of the physical server and the host OS

• Each container shares the Host kernel and binaries and libraries

• Separates the application from the node OS.

• Lightweight

• Instead of GB’s size is on order of MB’s

• Take seconds to start instead of minutes

• Can pack more applications on the same node compared to Virtual Machines

Image Source: https://blog.netapp.com/wp-content/uploads/2016/03/Screen-Shot-2018-03-20-at-9.24.09-AM-935x500.png

6Pegasus

https://blog.netapp.com/wp-content/uploads/2016/03/Screen-Shot-2018-03-20-at-9.24.09-AM-935x500.png

Solutions: Why Containers?
• Reproducibility

• Supply a fully defined and reproducible environment

• Usually described as a recipe file that captures the steps to configure and setup the container

• Ability to provide a flexible user controlled environment that underlying compute cluster
cannot

• Administrators main goal is to provide a stable, slow moving, multi-user environment

• Cannot provide all combinations of development libraries and tools for their user community

• Perfect for deploying on demand.

• Also seamlessly transfer to another compute environment

7Pegasus

However: Challenges deploying Containers for
Distributed Workflows

• How to distribute container images and make them available to compute jobs

• Pegasus workflows contain thousands or millions of jobs simultaneously running

• Container Technologies are fragmented

• One size fits all approach does not work

8Pegasus

Design Considerations
• Support for different container technologies

• Docker popular in traditional corporate computing environment.

• By default jobs run as root!

• Singularity preferred in HPC as allows jobs to run in user space

• Some HPC centers support custom solutions such as Shifter to run Docker images

• Work in Distributed Environments

• Users don’t know a-priori which node or cluster a job lands on.

• OSG is dynamic computing environment

• Easy Configuration and Representation

• Easy for users to configure which container and type of container required by their jobs

• Support for Public Registries

• Lot of popular images available. Have ability to retrieve them

9Pegasus

Motivation Reproducibility for Workflows

Containers Solution for Reproducibility

Challenges deploying for

Distributed Workflows

Design Considerations

Pegasus Introduction

Container Support

Experiments Setup

Results

Outline

Pegasus 10https://pegasus.isi.edu

https://pegasus.isi.edu

Automate

Recover

Debug

Pegasus Workflow Management System

Automates complex, multi-stage processing

pipelines
Enables parallel, distributed computations

Automatically executes data transfers

Reusable, aids reproducibility

Records how data was produced (provenance)

Handles failures with to provide reliability

Keeps track of data and files

NSF funded project since 2001,

with close collaboration with

HTCondor team

11Pegasus

Pegasus

12

• Users describe their pipelines in a portable format

called Abstract Workflow, without worrying about

low level execution details.

• Pegasus takes this and generates an executable

workflow that

• has data management tasks added

• transforms the workflow for performance and

reliability

transformation

executables (or programs)

platform independent

logical filename (LFN)
platform independent (abstraction)

Abstract workflow

Removes unused data

executable

workflow

cleanup job

stage-in job

stage-out job

registration job

Transfers the workflow

input data

Transfers the workflow

output data

Pegasus

Pegasus Deployment

13Pegasus

• Workflow Submit Node

• Pegasus WMS

• HTCondor

• One or more Compute Sites

• Compute Clusters

• Cloud

• OSG

• Input Sites

• Host Input Data

• Data Staging Site

• Coordinate data movement for
workflow

• Output Site

• Where output data is placed

Pegasus: Container Execution Model

• Containerized jobs are launched via Pegasus Lite

• Container image is put in the job directory along with
input data.

• Loads the container if required on the node (applicable
for Docker)

• Run a script in the container that sets up Pegasus in the
container and job environment

• Stage-in job input data

• Launches user application

• Ship out the output data generated by the application

• Shut down the container (applicable for Docker)

• Cleanup the job directory

14Pegasus

Pegasus: Data Management
• Treat containers as input data dependency

• Needs to be staged to compute node if not present

• Users can refer to container images as

§ Docker Hub or Singularity Library URL’s

§ Docker Image exported as a TAR file and available at a server , just like any other input dataset.

• If an image is specified to be residing in a hub

§ The image is pulled down as a tar file as part of data stage-in jobs in the workflow

§ The exported tar file is then shipped with the workflow and made available to the jobs

§ Motivation: Avoid hitting Docker Hub/Singularity Library repeatedly for large workflows

• Symlink against a container image if available on shared fileystem

§ For e.g. CVMFS hosted images on Open Science Grid

15Pegasus

Pegasus: Container
Representation

container
Reference to the container to use.

Multiple transformation can

refer to same container

image

- transformations

- namespace: “example”
name: “keg”

version: 1.0
site:

- name: “isi”
arch: “x86
os "linux”

pfn "/usr/bin/pegasus-keg
container "centos-pegasus”

INSTALLED means pfn refers to path in the container.
STAGEABLE means the executable can be staged into the container

type "INSTALLED”

- cont:

- name: “centos-pegasus”

can be docker, singularity or shifter
type: ”docker”

URL to image in docker|singularity hub or shifter repo URL or
URL to an existing image exported as a tar file or singularity image file

image: "docker:///centos:7”

mount information to mount host directories into
container format src-dir:dest-dir[:options]
mount:

- "/Volumes/Work/lfs1:/shared-data/:ro"

environment to be set when the job is run in the container
only env profiles are supported
profile:

- env:
"JAVA_HOME" "/opt/java/1.6”

URL to image in a docker|singularity hub OR

to an existing docker image exported as a

tar file or singularity image

type
Can be either docker or singularity or shifter

mount

Mount information to mount host directories

into container

Described in Transformation Catalog

• Maps logical transformations to
physical executables on a particular
system

Pegasus

Motivation Reproducibility for Workflows

Containers Solution for Reproducibility

Challenges deploying for

Distributed Workflows

Design Considerations

Pegasus Introduction

Container Support

Experiments Setup

Results

Outline

Pegasus 17https://pegasus.isi.edu

Experiments: Setup

• Used Chameleon Testbed in TACC

• 1 workflow submit node

• 1 NSF server node

• 4 worker nodes

• All nodes were bare metal with 24
physical cores, 128GB RAM

• 10 Gbps network connection

• Network capped at 1Gbps

• Test Workflow

• CASA workflow with 63 compute
jobs and 10 additional data transfer
and auxiliary tasks

18Pegasus

Non Shared Filesystem Setup

Shared Filesystem Setup

Experiments:
• Base experiment

• Run CASA workflow without any containers in the non
shared filesystem setup

• Experiment 2

• Executing workflow with Docker and Singularity
containers in non shared filesystem setup

• Experiment 3

• Staged input data to NFS and have compute jobs symlink
against it

Goals

• Demonstrate increase in walltime due to staging of
containers and how job clustering helps

• Show staging of containers can saturate network and disk
IO

19Pegasus

Non Shared Filesystem Setup

Shared Filesystem Setup

Results:
• Workflow Makespan Per Execution Setup

• Increase from 172.2 seconds to 681.7 and 321.6 for
Docker and Singularity Containers with no job clustering.

• Clustering decreases the overhead, as container is staged
once per 12 tasks.

• Docker image size 488MB vs 153 MB for Singularity image
file.

• Egress Traffic on the Submit Node

• Submit host is data staging site for the non shared
filesystem setup.

• Hight because of transfer of associated data transfers of
containers per job.

20Pegasus

 0

 100

 200

 300

 400

 500

 600

 700

no container no container
nfs symlinks

docker docker
nfs symlinks

singularity singularity
nfs symlinks

A
v
g
.
R

u
n
ti

m
e
 (

S
e
c
o
n
d
s
)

Run Type

Average Makespan

Cluster Size 1
Cluster Size 12

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 100 200 300 400 500 600 700

Cluster Size 1

K
il
o
b
y
te

s
/S

e
c
o
n
d

Runtime (Seconds)

Submit Node: Network TX Usage

No Containers
Docker

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 100 200 300 400 500 600 700

Cluster Size 12

K
il
o
b
y
te

s
/S

e
c
o
n
d

Runtime (Seconds)

No Containers
Docker

Average Workflow Makespan per execution environment setup

Egress network traffic on submit node , without use of

containers and using Docker. NO NFS

Results:
• Average Service time I/O Requests using Docker

with NFS symlinking

• Negligible effect in case of NO containers

• Using Docker, leads to significant increase even when
symlinking.

• Docker image still needs to be un-tarred on local node
and loaded to local registry.

• Average Service time I/O Requests using Singularity
with NFS symlinking

• Singularity images are read directly

• And are much smaller in size

21Pegasus

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600

Cluster Size 1

M
il
li
s
e
c
o
n
d
s

Runtime (Seconds)

Worker: Average Disk Await (NFS Symlinks)

No Containers
Docker

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600

Cluster Size 12

M
il
li
s
e
c
o
n
d
s

Runtime (Seconds)

No Containers
Docker

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600

Cluster Size 1

M
il
li
s
e
c
o
n
d
s

Runtime (Seconds)

Worker: Average Disk Await (NFS Symlinks)

No Containers
Singularity

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600

Cluster Size 12

M
il
li
s
e
c
o
n
d
s

Runtime (Seconds)

No Containers
Singularity

Average service time of I/O requests on worker 4 using Docker

containers with NFS symlinking

Average service time of I/O requests on worker 4

using Singularity containers with NFS symlinking

Case Study: LIGO PyCBC Workflows
• PyCBC

• Python based software package fpr exploring astrophysical sources of gravitational waves

• Used in discoveries of gravitational waves from binary black holes and binary neutron stars.

• Complex Runtime Environment

• Call functions from both Python libraries (third party and PyCBC both) and also compiled code from
shared object libraries

• Requires build and runtime environments are compatible (compatible versions of glibc, gcc, python)

• For LIGO managed clusters can be solved using virtualenv and standard software installation

• However does not work for OSG and XSEDE

• Tried building bundled executables using PyInstaller. Not completely static and requires dynamically
linked glibc

• Containers via Pegasus

• Deployment of containers managed by Pegasus

• Mount CVMFS inside the container for access to existing data on the site

22Pegasus

Pegasus Container Support: Experiences
• Direct Access to Singularity Images via CVMFS

• On OSG, singularity images distributed using CVMFS available on all nodes

• Pegasus opted to pull image once to data staging site and pull to the compute node at runtime.

• Disadvantage of not being able to use out of band caching and distribution made available by CVMFS

• We updated Pegasus to enable bypass of container staging, and symlink directly against images on
CVMFS

• Moved Data Staging inside of the container

• Earlier the data staging happened outside of the container on the HOST OS.

• Allowed us to rely on infrastructure provided tools on the HOST OS.

• However, left user no control to using their own choice of transfer tools.

• In Pegasus 4.9.1 moved data staging to occur inside the container

• Loading multiple Docker image tar files.

• Adverse affect on local disk performance if multiple jobs try loading an image on the same node in a
short period of time.

23Pegasus

Questions?

24

Pegasus
Automate, recover, and debug scientific computations.

Get Started

Pegasus Website

https://pegasus.isi.edu

Users Mailing List

pegasus-users@isi.edu

Support

pegasus-support@isi.edu

Pegasus Online Office Hours

https://pegasus.isi.edu/blog/online-pegasus-office-hours/

Bi-monthly basis on second Friday of

the month, where we address user

questions and also apprise the

community of new developments

