Cyberinfrastructure Center of Excellence Pilot: Connecting Large Facilities Cyberinfrastructure

Ewa Deelman,
University of Southern California, PI

Co-Pls:
Anirban Mandal, RENCI
Jarek Nabrzyski, Notre Dame University
Valerio Pascucci and Rob Ricci, University of Utah

Funded by the National Science Foundation
Grant #1842042
Cyberinfrastructure “consists of computing systems, data storage systems, advanced instruments and data repositories, visualization environments, and people, all linked together by software and high performance networks to improve research productivity and enable breakthroughs not otherwise possible.”

CI is a critical component of Science: Large Facilities (LFs)

Searching for gravitational waves

Understanding ocean and coastal ecosystems

Looking for exoplanets

Studying climate

The National Ecological Observatory Network: Open data to understand how our aquatic and terrestrial ecosystems are changing.
October 16th 2017:
“LIGO and Virgo make first detection of gravitational waves produced by colliding neutron stars”

“The inspiral and merger of two neutron stars, as illustrated here, should produce a very specific gravitational wave signal, but the moment of the merger should also produce electromagnetic radiation that’s unique and identifiable as such.”, credit LIGO

“aftermath of the BNS merger... 16 days after the merger NRAO’s Jansky Very Large Array (VLA) captured the radio image” from LIGO.org

Images credit: LIGO Scientific Collaboration
There are limited interactions and limited knowledge sharing among large facilities and large CI projects.
Develop a model and a plan for a Cyberinfrastructure Center of Excellence

• Dedicated to the enhancement of CI for science
• Platform for knowledge sharing and community building
• Key partner for the establishment and improvement of Large Facilities with advanced CI architecture designs
• Grounded in re-use of dependable CI tools and solutions
• Forum for discussions about CI sustainability and workforce development and training
• Pilot a study for a CI CoE through close engagement with NEON and further engagement with other LFs and large CI projects.

10/2018– 9/2020
Project Team

USC
Ewa Deelman
Mats Rynge
Karan Vahi Loïc Pottier
Rafael Ferreira da Silva
Ryan Mitchell

RENCI
Anirban Mandal
Ilya Baldin
Laura Christopherson
Paul Ruth
Erik Scott

Automation, Resource Management, Workflows

Resource Management, Networking, Clouds, Social Science
Project Team

University of Notre Dame
Jarek Nabrzyski
Jane Wyngaard
Charles Vardeman

University of Utah
Valerio Pascucci, Rob Ricci,
Timo Bremer, Attila Gyulassy,
Steve Petruzza

Indiana University
Susan Sons (co-funded by Trusted CI)
Von Welch (unfunded collaborator)

Workforce development, Sensors, Semantic technologies

Data management, visualization, clouds, large-scale CI deployment

Cybersecurity
1. Recognize the expertise, experience, and mission-focus of Large Facilities
2. Engage with and learn from current LFs CI
3. Build on existing knowledge, tools, community efforts
 - Avoid duplication, seek providing added value,
4. Prototype solutions that can enhance particular LF’s CI
 - Keep a separation between our efforts and the LF’s CI developments
5. Build expertise, not software
6. Work with the LFs and the CI community on a blueprint for the CI CoE

Build partnerships:
- Trusted CI (identity management): share personnel
- Open Science Grid (data and workload management): share expertise
- Campus Research Computing Consortium (CaRCC): workforce development
Engagement Methodology

Process for Engagement with a Facility

- Engage at the management level, potentially seek introductions from NSF PO, participate in meeting (LF Workshop, LF CI Workshop)
- Initial virtual technical group discussions to define possible avenues of engagement
- In person meeting with a number of technical personnel
- Identity topics for engagement
- Set up working groups
- Follow up email and conference call discussions focused on particular topics/working groups
- Bigger group discussions/checkpointing
- Reports of engagement, gather feedback from the project engaged

Developing and improving Engagement Model

1. Engage with Large Facility
2. Learn
3. Provide expertise
4. Distill best practices
5. Disseminate
6. Foster a CI community

Evaluate approach and adjust engagement process
NEON provides a coordinated national system for monitoring critical ecological and environmental properties at multiple spatial and temporal scales. …transformative science …workforce development

20 ecoclimatic domains distinct landforms, vegetation, climate, and ecosystem dynamics.

Terrestrial sites: terrestrial plants, animals, soil, and the atmosphere,

Aquatic sites: aquatic organisms, sediment and water chemistry, morphology, and hydrology.

Data collection over 30 years

27 Relocatable terrestrial sites
13 Relocatable aquatic sites
What services correspond to the data lifecycle stages?

Data Capture

Initial data filtering/processing

Central data processing

Data Archiving and Storage

Data Access/Visualization/Dissemination

WHAT?

some type of sensor or instrument (e.g., GRAPEs, telescope, DOMs)

often at the sensor site, or nearby

main data center

main data center

scientists/public

WHERE?

Secondary data center(s)

Secondary data center(s)

Different forms of transmission/movement (e.g., plane, satellite, cables), redundant network links...

Data Movement

Disaster Recovery (DR)

What services correspond to the data lifecycle stages?
<table>
<thead>
<tr>
<th>Working group</th>
<th>Goals</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Capture</td>
<td>Develop demonstrators and comparisons of the multiple architectures for data capture at the sensor to data deposition in a repository.</td>
<td>• Prototype: architecture demo on github: https://github.com/cicoe/SensorThingsGost-Balena</td>
</tr>
</tbody>
</table>
| Data Life Cycle & Disaster Recovery | Develop a general set of DR requirements and policies that can inform the LFs about best practices for DR and how those can be adapted for specific facilities. | • **Document**: Disaster recovery template
• **Document**: Filled out template example (IceCube)
• **Webinar**: Best Practices for NSF Large Facilities: Data Life Cycle and Disaster Recovery Planning |
| Data Processing | Provide support and distill best practices for workflows and services related to the processing of data. | • **Paper**: “Exploration of Workflow Management Systems Emerging Features from Users Perspectives” (in submission) |
| Data Storage, Curation, & Preservation | Compare and be able to consult on different data storage, curation and preservation technologies. | • **Document**: Competency questions based on scenarios that domain experts may use Google dataset search for NEON dataset discovery
• **Presentation**: at ESIP on schema.org
• Small containerized **prototype** of publishing neon vocabularies as linked data and linked data connection |
<table>
<thead>
<tr>
<th>Working group</th>
<th>Goals</th>
<th>Products</th>
</tr>
</thead>
</table>
| Data Visualization & Dissemination | Understand the access, visualization and user interaction workflows in large facilities. Distill best practices and provide solutions to improve the access and usability of the available data. | • **Document** describing AOP data visualization cyberinfrastructure
| Identity Management | Understand current practice in authentication and authorization and help mature practice across the NSF Large Facilities. | • **Production deployment**: Connection to CI Logon NEON data download (using existing university / organization credentials) https://cert-data.neonscience.org/home
• **Paper**: [NEON IdM Experiences](https://cert-data.neonscience.org/home) (in submission to NSF Cybersecurity Summit) |
| Engagement with Large Facilities | Engage with Large Facilities and other large cyberinfrastructure projects to foster knowledge and effective practice sharing; 2) define avenues of engagement, modes of engagement, and plan community activities. | • **Document**: LF engagement template
• **Presentations**: SCIMMA project meeting, 2019 LF meeting, PEARC’19
• **Paper**: Invited e-Science 2019 paper |
1. Importance of f2f discussions, building relationships and trust
2. Benefits of formalizing the engagement: expectation, timelines, resources to use
3. Importance of LF priorities and challenges, importance of good timing
4. Organizing work around working groups and work products
5. Be open to learn about what works, don’t fix it (workflow management)
6. Co-existence of old and new systems, making for a heterogeneous CI landscape
CoE Pilot Benefits to NEON Thus Far

• Short ramp-up due to receptivity/readiness to change
• Broadened network of expert CI colleagues
• Major upgrade to Data Portal’s remote sensing visualization
• Accelerated Data Portal completion plan
• Affirmed strategies for workflow, messaging, & DR
• Raised critical mass of attention on semantics & schema.org
• Excited software developers
• Escalated accountability of CI
• More coming

Slide courtesy of Tom Gulbransen, NEON
Expanding Engagement with Large Facilities

- **Deep engagement:**
 - Identify a topic that is important and not-yet fully solved by the LF,
 - Conduct focused discussions, mix of virtual and in-person presence, hands-on work
 - Includes an engagement template that defines scope, sets expectations, identifies products
 - Work products: documents/papers, prototypes, schema implementations, demos

- **Topical discussions:**
 - Identify a topic that is important to a number of LFs
 - Facilitate virtual discussions, sessions at conferences, collect and share experiences, distill best practices
 - Discover opportunities for shared infrastructure

- **Community building:**
 - **Connect CI professionals**
 - Collect information and disseminate information about the broad community activities
 - Maintain a living resource for community information
 - Develop new partnerships

- **Each engagement has a working group with 1-2 leaders and a set of work products.**
Things to come: engagement with other large facilities and the broader CI community

http://cicoe-pilot.org

ci-coe-pilot@isi.edu

Ewa Deelman deelman@isi.edu

• Connecting LF CI workshop, 2019: http://facilitiesci.org