
Pegasus + HTCondor DAGMan: Expanding

Scientific Workflows Horizons

Karan	Vahi	
vahi@isi.edu	

https://pegasus.isi.edu	

Pegasus http://pegasus.isi.edu	
2	

Compute Pipelines –
Building Blocks

HTCondor DAGMan
•  DAGMan is a reliable and a scalable workflow executor

Sits on top of HTCondor Schedd
Can handle very large workflows

•  Has useful reliability features in-built
Automatic job retries and rescue DAG’s (recover
from where you left off in case of failures)

•  Throttling for jobs in a workflow

However, it is still up-to user to figure out
•  Data Management

How do you ship in the small/large amounts data
required by your pipeline and protocols to use?

•  How best to leverage different infrastructure setups
OSG has no shared filesystem while XSEDE and your
local campus cluster has one!

•  Debug and Monitor Computations.
 Correlate data across lots of log files.
 Need to know what host a job ran on and how it was
invoked

•  Restructure Workflows for Improved Performance
Short running tasks?

 Data placement

Pegasus http://pegasus.isi.edu	 3	

Automate	

Recover	

Debug	

Why Pegasus?

Automates complex, multi-stage processing pipelines

Enables parallel, distributed computations

Automatically executes data transfers

Reusable, aids reproducibility

Records how data was produced (provenance)

Provides to tools to handle and debug failures

Keeps track of data and files

NSF funded project since 2001, with close
Collaboration with HTCondor team.

Portable: Describe once; execute multiple times

Pegasus https://pegasus.isi.edu	 4	

cleanup job
Removes	unused	data	

stage-in job

stage-out job

registration job

Transfers	the	workflow	input	data	

Transfers	the	workflow	output	data	

Registers	the	workflow	output	data	

clustered job
Groups	small	jobs	together	

to	improve	performance	

DAG directed-acyclic graphsDAX DAG in XML

Portable Description

Users don’t worry about
low level execution details

Condor	I/O	(HTCondor	pools,	OSG,	…)	
•  Worker	nodes	do	not	share	a	file	system	
•  Data	is	pulled	from	/	pushed	to	the	submit	host	
via	HTCondor	file	transfers	

•  Staging	site	is	the	submit	host	
	

	

Non-shared	File	System	(clouds,	OSG,	…)	
•  Worker	nodes	do	not	share	a	file	system	
•  Data	is	pulled	/	pushed	from	a	staging	site,	
possibly	not	co-located	with	the	computation	
	

	

Shared	File	System	(HPC	sites,	XSEDE,	Campus	
clusters,	…)	

•  I/O	is	directly	against	the	shared	file	system	

Data Staging Configurations

Submit	

Host	

Compute	Site	

Shared	

FS	

WN	

WN	

HPC Cluster

Compute	Site	

Submit	

Host	
Staging	

Site	

WN	

WN	

Amazon

EC2 with S3

Submit	

Host	

Local	FS	

Compute	Site	

WN	

WN	

Jobs

Data

Pegasus Guarantee - Wherever and whenever a job runs
it’s inputs will be in the directory where it is launched.

pegasus-transfer
•  Pegasus’	internal	data	transfer	tool	with	support	for	a	
number	of	different	protocols	
	

•  Directory	creation,	file	removal	
•  If	protocol	supports,	used	for	cleanup	
	

•  Two	stage	transfers	
•  e.g.	GridFTP	to	S3	=	GridFTP	to	local	file,	local	file	to	S3	
	

•  Parallel	transfers	
	

•  Automatic	retries	
	

•  Credential	management	
•  Uses	the	appropriate	credential	for	each	site	and	each	protocol	(even	
3rd	party	transfers)	

HTTP	

SCP	

GridFTP	

Globus	Online	

iRods	

Amazon	S3	

Google	Storage	

SRM	

FDT	

stashcp	

cp	

ln	-s	
	

Advanced	LIGO	–	

Laser	Interferometer	

Gravitational	Wave	

Observatory	

Benefits to LIGO provided by Pegasus- Expanded
Computing Horizons

•  No	longer	limited	to	a	single	execution	resource	
•  Non	Pegasus	LIGO	pipelines	can	often	only	run	on	LIGO	clusters	
•  Input	is	replicated	out	of	band	,	in	a	rigid	directory	layout.		
•  Rely	on	the	shared	filesystem	to	access	data.	
	

•  Pegasus	made	it	possible	to	leverage	Non	LDG	Computing	Resources	
	

•  Open	Science	Grid		
•  Dynamic	–	Best	Effort	Resource	with	no	shared	filesystem	available	

•  Large	NSF	Supercomputing	Clusters	XSEDE	
•  No	HTCondor	
•  Geared	for	Large	MPI	jobs,	not	thousands	of	single	node	jobs	

•  LIGO	tried	to	setup	XSEDE	cluster	as	a	LDG	site	but	mismatch	in	setup.	

•  Pegasus	enabled	LIGO	to	use	XSEDE	without	changes	at	LIGO	or	at	XSEDE	

•  VIRGO	Resources	in	Europe	
•  Clusters	with	no	shared	filesystem	and	different	storage	management	infrastructure	than	LDG	

•  No	HTCondor	

Pegasus 9	

Optimizing storage
usage…

cleanup job
Removes	unused	data	

abstract workflow

executable workflow

storage constraints

optimizations	

Problem?
•  Users run out of disk space while running

workflows

Why does it occur
•  Workflows could bring in huge amounts of data

•  Data is generated during workflow execution

•  Users don’t worry about cleaning up after they
are done

•  Pegasus Solutions
•  Add leaf cleanup nodes to cleanup after workflow

finishes.

•  Interleave cleanup nodes

•  Cluster cleanup nodes per level to improve
performance

Pegasus 10	

TACC Wrangler as Execution
Environment	

Flash Based Shared Storage�

Switched to glideins (pilot jobs) - Brings in remote
compute nodes and joins them to the HTCondor pool on
in the submit host - Workflow runs at a finer
granularity

Works well on Wrangler due to more cores and memory
per node (48 cores, 128 GB RAM)

Pegasus http://pegasus.isi.edu	 11	

Performance, why
not improve it?

clustered job
Groups	small	jobs	together	

to	improve	performance	

task
small	granularity	

workflow restructuring

workflow reduction

hierarchical workflows

Problem?
•  Users can have short running

tasks that increase workflow
walltime

Why does it occur
•  Each job has a scheduling

delay associated with it

•  Pegasus Solutions
•  Cluster tasks together

resulting in improved
performance and better data
placement

•  Ability to run clustered tasks
as a single MPI job

Pegasus http://pegasus.isi.edu	 12	

Running fine-grained
workflows on HPC systems…

pegasus-mpi-cluster

HPC	System	
submit host
(e.g.,	user’s	laptop)	

Master	

(rank	0)	

worker	

ra
n
k
	1
	

ra
n
k
	n
-1
	

workflow wrapped as an MPI job
Allows	sub-graphs	of	a	Pegasus	workflow	to	be	

submitted	as	monolithic	jobs	to	remote	resources	

workflow restructuring

workflow reduction

hierarchical workflows

Pegasus http://pegasus.isi.edu	 13	

Pegasus
dashboard

web	interface	for	monitoring	

and	debugging	workflows	

Real-time	monitoring	of	

workflow	executions.	It	shows	

the	status	of	the	workflows	and	

jobs,	job	characteristics,	statistics	

and	performance	metrics.	

Provenance	data	is	stored	into	a	

relational	database.	

Real-time	Monitoring	

Reporting	

Debugging	

Troubleshooting	

RESTful	API	

http://pegasus.isi.edu	 14	Pegasus

But, if you prefer the command-line…

…Pegasus provides
a set of concise

and powerful tools

$ pegasus-status pegasus/examples/split/run0001
STAT IN_STATE JOB
Run 00:39 split-0 (/home/pegasus/examples/split/run0001)
Idle 00:03 ┗━split_ID0000001
Summary: 2 Condor jobs total (I:1 R:1)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 14 0 0 1 0 2 0 11.8 Running *split-0.dag

$ pegasus-statistics –s all pegasus/examples/split/run0001
--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 5 0 0 5 0 5

Jobs 17 0 0 17 0 17
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 2 mins, 6 secs
Workflow cumulative job wall time : 38 secs

Cumulative job wall time as seen from submit side : 42 secs
Workflow cumulative job badput wall time :
Cumulative job badput wall time as seen from submit side :

$ pegasus-analyzer pegasus/examples/split/run0001
pegasus-analyzer: initializing...

****************************Summary***************************

Total jobs : 7 (100.00%)
jobs succeeded : 7 (100.00%)
jobs failed : 0 (0.00%)
jobs unsubmitted : 0 (0.00%)

>_	

Pegasus Container Support

•  Support	for	
•  Docker	

•  Singularity	–	Widely	supported	on	OSG	

	

•  Users	can	refer	to	containers	in	the	Transformation	Catalog	with	their	executable	
preinstalled.	

•  Users	can	refer	to	a	container	they	want	to	use.	However,	they	let	Pegasus	stage	their	
executable	to	the	node.		

•  Useful	if	you	want	to	use	a	site	recommended/standard	container	image.	

•  Users	are	using	generic	image	with	executable	staging.	

•  Future	Plans	
•  Users	can	specify	an	image	buildfile	for	their	jobs.		

•  Pegasus	will	build	the	Docker	image	as	separate	jobs	in	the	executable	workflow,	export	them	at	tar	
file	and	ship	them	around	(planned	for	4.8.X)	

Data Management for Containers

• Users	can	refer	to	container	images	as		
•  Docker	or	Singularity	Hub	URL’s	
•  Docker	Image	exported	as	a	TAR	file	and	available	at	a	server	,	just	like	any	other	
input	dataset.	

• We	want	to	avoid	hitting	Docker/Singularity	Hub	repeatedly	for	large	
workflows	

•  Extend	pegasus-transfer	to	pull	image	from	Docker	Hub	and	then	export	it	as	tar	file,	
that	can	be	shipped	around	in	the	workflow.	

	

•  Ensure	pegasus	worker	package	gets	installed	at	runtime	inside	the	user	
container.	

Pegasus http://pegasus.isi.edu	 17	

Upcoming	Features	

Pegasus 4.9

To	be	released	with:	

cacr.iu.edu/projects/swip/

Scientific Workflow Integrity with Pegasus
NSF CICI Awards 1642070, 1642053, and 1642090

GOALS

Provide additional assurances that a scientific

workflow is not accidentally or maliciously

tampered with during its execution

Allow for detection of modification to its data or

executables at later dates to facilitate

reproducibility.

Integrate cryptographic support for data

integrity into the Pegasus Workflow

Management System.

PIs:	Von	Welch,	Ilya	Baldin,	Ewa	Deelman,	Steve	Myers	

Team:	Omkar	Bhide,	Rafael	Ferrieira	da	Silva,	Randy	Heiland,	

Anirban	Mandal,	Rajiv	Mayani,	Mats	Rynge,	Karan	Vahi	

cacr.iu.edu/projects/swip/

Automatic Integrity Checking

Pegasus will perform integrity checksums
on input files before a job starts on the
remote node.

●  For raw inputs, checksums specified in the input
replica catalog along with file locations. Can
compute checksums while transferring if not
specified.

●  All intermediate and output files checksums are
generated and tracked within the system.

●  Support for sha256 checksums

Failure is triggered if checksums fail

cacr.iu.edu/projects/swip/

Initial Results with Integrity Checking on

•  OSG-KINC workflow (50606 jobs) encountered 60 integrity errors in the wild
(production OSG). The problematic jobs were automatically retried and the workflow
finished successfully.

•  The 60 errors took place on 3 different hosts. The first one at UColorado, and group 2
and 3 at UNL hosts.

 Error Analysis

•  Host 2 had 3 errors, all the same bad checksum for the "kinc" executable with only a few
seconds in between the jobs.

•  Host 3 had 56 errors, all the same bad checksum for the same data file, and over the timespan
of 64 minutes. The site level cache still had a copy of this file and it was the correct file. Thus we
suspect that the node level cache got corrupted.

• AWS	Batch	

Container	based,	dynamically	scaled	and	
efficient	batch	computing	service	

	

Automatically	launches	compute	nodes	in	
Amazon	based	on	demand	in	the	
associated	job	queue	

	

Users	can	specify	compute	environment	
that	dictates	what	type	of	VM’s	are	
launched	

• Pegasus	will	allow	clusters	of	jobs	to	
be	run	on	Amazon	EC2	using	AWS	
Batch	Service	

	

New	command	line	tool	pegasus-aws-
batch	

	

Automates	most	of	the	batch	setup	
programmatically	

•  Sets	up	and	Deprovisions	

•  Compute	Environment	

•  Job	Queues	

•  Follows	AWS	Batch	HTTP	specification		

Integration	
with	

Pegasus http://pegasus.isi.edu	 22	

Other Pegasus Capabilities…

Metadata
• Can	associate	arbitrary	key-value	
pairs	with	workflows,	jobs,	and	
files	
	

• Data	registration	
•  Output	files	get	tagged	with	
metadata	on	registration	in	the	
workflow	database.	
	

•  Static	and	runtime	metadata	
•  Static:	application	parameters	

•  Runtime:	performance	metrics	

Introduced in Pegasus 4.6

24	

Pegasus

Campus	

Cluster	
HPC/HTC	 Clouds	

WAN	 LAN	

Running Pegasus workflows with Jupyter

Pegasus-Jupyter Python API

25	

importing the API

from Pegasus.jupyter.instance import *

using the Pegasus DAX3 API
to write a workflow

Create an abstract dag

dax = ADAG("split")

the split job that splits the webpage into smaller chunks

split = Job("split")

split.addArguments("-l","100","-a","1",webpage,"part.")
split.uses(webpage, link=Link.INPUT)
associate the label with the job. All jobs with same label

are run with PMC when doing job clustering

split.addProfile(Profile("pegasus","label","p1"))
dax.addJob(split)

creating an instance�
of the DAX

instance = Instance(dax)

running a workflow

instance.run(site='condorpool')

monitoring a workflow execution

instance.status(loop=True, delay=5)

Pegasus http://pegasus.isi.edu	 26	

What about data reuse?

data already �
available

Jobs	which	output	data	is		

already	available	are	pruned	

from	the	DAG	

data reuse

workflow restructuring

workflow reduction

hierarchical workflows

workflow �
reduction

data also�
available

data reuse

http://pegasus.isi.edu	 27	

Pegasus also handles
large-scale workflows

recursion ends
when DAX with�
only compute jobs�
is encountered

sub-workflow

sub-workflow

workflow restructuring

workflow reduction

hierarchical workflows

Pegasus
Automate,	recover,	and	debug	scientific	computations.		

Get Started

Pegasus	Website	

http://pegasus.isi.edu	

Users	Mailing	List	

pegasus-users@isi.edu	

Support	

pegasus-support@isi.edu	

HipChat	

est. 2001

Pegasus
Automate,	recover,	and	debug	scientific	computations.		

Thank You

Questions?
Mats	Rynge	

rynge@isi.edu	

Karan	Vahi	

Rafael	Ferreira	da	Silva	

Rajiv	Mayani	

Mats	Rynge	

Ewa	Deelman	

Meet our team

est. 2001

