
Enhancing Scientific

Computations with

Scientific Workflows
Pegasus Workflow Management System

George Papadimitriou

Rafael Ferreira da Silva

Ewa Deelman

http://pegasus.isi.edu

OUTLINE

Pegasus Overview

Features

Basic Concepts

Features

System Architecture

Data Staging

Information Catalogs

Fault-Tolerance

Pegasus 2http://pegasus.isi.edu

Break 10min Break

Scientific Workflows

Pegasus Overview

Successful Stories

Introduction

Hands On Tutorial

OUTLINE

Pegasus Overview

Features

Basic Concepts

Features

System Architecture

Data Staging

Information Catalogs

Fault-Tolerance

Pegasus 3http://pegasus.isi.edu

Break 10min Break

Scientific Workflows

Pegasus Overview

Successful Stories

Introduction

Hands On Tutorial

Pegasus 4

Compute Pipelines

Building Blocks

Compute Pipelines

• Allows scientists to connect different codes together and execute their

analysis

• Pipelines can be very simple (independent or parallel) jobs or complex

represented as DAG’s

• Helps users to automate scale up

However, it is still up-to user to figure out

Data Management

• How do you ship in the small/large amounts data required by your

pipeline and protocols to use?

How best to leverage different infrastructure setups

• OSG has no shared filesystem while XSEDE and your local campus cluster

has one!

Debug and Monitor Computations

• Correlate data across lots of log files

• Need to know what host a job ran on and how it was invoked

Restructure Workflows for Improved Performance

• Short running tasks? Data placement

http://pegasus.isi.edu

Pegasus http://pegasus.isi.edu 5

Automate

Recover

Debug

Why Pegasus?

Automates complex, multi-stage processing pipelines

Enables parallel, distributed computations

Automatically executes data transfers

Reusable, aids reproducibility

Records how data was produced (provenance)

Handles failures with to provide reliability

Keeps track of data and files

NSF funded project since 2001, with close collaboration with

HTCondor team

Pegasus http://pegasus.isi.edu 6

Some of the successful stories…

60,000 compute tasks

Input Data: 5000 files (10GB total)

Output Data: 60,000 files (60GB total)

executed on LIGO Data Grid,

Open Science Grid and XSEDE

Pegasus https://pegasus.isi.edu 8

Advanced LIGO

PyCBC Workflow

One of the main pipelines to measure the statistical
significance of data needed for discovery

Contains 100’s of thousands of jobs and accesses on order of
terabytes of data

Uses data from multiple detectors

For the detection, the pipeline was executed on Syracuse and
Albert Einstein Institute Hannover

A single run of the binary black hole + binary neutron star
search through the O1 data (about 3 calendar months of data
with 50% duty cycle) requires a workflow with 194,364 jobs

Generating the final O1 results with all the review required for
the first discovery took about 20 million core hours

8
PyCBC Papers: An improved pipeline to search for gravitational waves from compact binary coalescence. Samantha Usman, Duncan Brown et al.

The PyCBC search for gravitational waves from compact binary coalescence, Samantha Usman et al (https://arxiv.org/abs/1508.02357)

PyCBC Detection GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. B. P. Abbott et al.

https://arxiv.org/abs/1508.02357

Pegasus http://pegasus.isi.edu 9

Southern California Earthquake Center’s
CyberShake

Builders ask seismologists: What will the peak ground

motion be at my new building in the next 50 years?

Seismologists answer this question using Probabilistic

Seismic Hazard Analysis (PSHA)

286 sites, 4 models

each workflow has 420,000 tasks

CPU jobs (Mesh generation, seismogram synthesis):

1,094,000 node-hours

GPU jobs: 439,000 node-hours

AWP-ODC finite-difference code

5 billion points per volume, 23000 timesteps

200 GPUs for 1 hour

Titan:

421,000 CPU node-hours, 110,000 GPU node-hours

Blue Waters:

673,000 CPU node-hours, 329,000 GPU node-hours

Enabled cutting-edge domain science (e.g.,
drug delivery) through collaboration with
scientists at the DoE Spallation Neutron
Source (SNS) facility

A Pegasus workflow was developed that
confirmed that nanodiamonds can enhance
the dynamics of tRNA

It compared SNS neutron scattering data with
MD simulations by calculating the epsilon
that best matches experimental data

Ran on a Cray XE6 at NERSC using 400,000
CPU hours, and generated 3TB of data.

Water is seen as small red and

white molecules on large

nanodiamond spheres. The

colored tRNA can be seen on

the nanodiamond surface.

(Image Credit: Michael

Mattheson, OLCF, ORNL)

An automated analysis workflow for optimization of force-field parameters using neutron

scattering data. V. E. Lynch, J. M. Borreguero, D. Bhowmik, P. Ganesh, B. G. Sumpter, T. E.

Proffen, M. Goswami, Journal of Computational Physics, July 2017.

Impact on DOE Science

Pegasus https://pegasus.isi.edu 10

Pegasus http://pegasus.isi.edu 11

Soybean Workflow
TACC Wrangler as Execution Environment

Flash Based Shared Storage

Switched to glideins (pilot jobs) - Brings in remote compute nodes and joins

them to the HTCondor pool on the submit host - Workflow runs at a finer

granularity

Works well on Wrangler due to more cores and memory per node (48 cores,

128 GB RAM)

OUTLINE

Pegasus 12http://pegasus.isi.edu

Scientific Workflows

Pegasus Overview

Successful Stories

Introduction

Pegasus Overview Basic Concepts

Features

System Architecture

Features Data Staging

Information Catalogs

Fault-Tolerance

10min BreakBreak

Hands On Tutorial

Pegasus http://pegasus.isi.edu 13

Basic concepts…

Key Pegasus Concepts

Pegasus WMS == Pegasus planner (mapper) + DAGMan workflow engine +
HTCondor scheduler/broker

Pegasus maps workflows to infrastructure

DAGMan manages dependencies and reliability

HTCondor is used as a broker to interface with different schedulers

Workflows are DAGs
Nodes: jobs, edges: dependencies

No while loops, no conditional branches

Jobs are standalone executables

Planning occurs ahead of execution

Planning converts an abstract workflow into a concrete, executable workflow
Planner is like a compiler

Pegasus https://pegasus.isi.edu 14

Pegasus https://pegasus.isi.edu 15

cleanup job

Removes unused data

stage-in job

stage-out job

registration job

Transfers the workflow input data

Transfers the workflow output data

Registers the workflow output data

DAG
directed-acyclic graphs

DAG in XML

Portable Description

Users do not worry about

low level execution details

abstract

workflow

executable

workflow
transformation

executables (or programs)

platform independent

logical filename (LFN)

platform independent (abstraction)

Pegasus http://pegasus.isi.edu 16

Pegasus also provides tools to

generate the abstract workflow

DAG in XML

Pegasus http://pegasus.isi.edu 17

An example

Split Workflow

#!/usr/bin/env python

import os, pwd, sys, time

from Pegasus.DAX3 import *

Create an abstract dag

dax = ADAG("split")

webpage = File("pegasus.html")

the split job that splits the webpage into smaller chunks

split = Job("split")

split.addArguments("-l","100","-a","1",webpage,"part.")

split.uses(webpage, link=Link.INPUT)

associate the label with the job. all jobs with same label

are run with PMC when doing job clustering

split.addProfile(Profile("pegasus","label","p1"))

dax.addJob(split)

we do a parmeter sweep on the first 4 chunks created

for c in "abcd":

part = File("part.%s" % c)

split.uses(part, link=Link.OUTPUT, transfer=False, register=False)

count = File("count.txt.%s" % c)

wc = Job("wc")

wc.addProfile(Profile("pegasus","label","p1"))

wc.addArguments("-l",part)

wc.setStdout(count)

wc.uses(part, link=Link.INPUT)

wc.uses(count, link=Link.OUTPUT, transfer=True, register=True)

dax.addJob(wc)

#adding dependency

dax.depends(wc, split)

f = open(“split.dax”, "w")

dax.writeXML(f)

f.close()

Visualization Tools:

pegasus-graphviz

pegasus-plots

https://pegasus.isi.edu/documentation/tutorial_submitting_wf.php

https://pegasus.isi.edu/documentation/tutorial_submitting_wf.php

Pegasus

Campus

Cluster
HPC/HTC Clouds

WAN LAN

Running Pegasus workflows with Jupyter

Pegasus http://pegasus.isi.edu 18

Pegasus-Jupyter Python API

importing the API

from Pegasus.jupyter.instance import *

using the Pegasus DAX3 API to write a workflow

Create an abstract dag

dax = ADAG("split")

the split job that splits the webpage into smaller chunks

split = Job("split")

split.addArguments("-l","100","-a","1",webpage,"part.")

split.uses(webpage, link=Link.INPUT)

associate the label with the job. All jobs with same label

are run with PMC when doing job clustering

split.addProfile(Profile("pegasus","label","p1"))

dax.addJob(split)
creating an instance

of the DAX

instance = Instance(dax)

running a workflow

instance.run(site='condorpool')

monitoring a workflow execution

instance.status(loop=True, delay=5)

Pegasus http://pegasus.isi.edu 19

Support for

Docker

Singularity – Widely supported on OSG

Users can refer to containers in the Transformation Catalog with their executable
preinstalled.

Users can refer to a container they want to use. However, they let Pegasus stage their
executable to the node.

Useful if you want to use a site recommended/standard container image.

Users are using generic image with executable staging.

Future Plans

Users can specify an image buildfile for their jobs.

Pegasus will build the Docker image as separate jobs in the executable workflow, export them at tar file
and ship them around (planned for 4.8.X)

Pegasus Container Support

Pegasus http://pegasus.isi.edu 20

Data Management for Containers

• Users can refer to container images as
• Docker or Singularity Hub URL’s

• Docker Image exported as a TAR file and available at a server , just like any other
input dataset.

• We want to avoid hitting Docker/Singularity Hub repeatedly for large
workflows

• Extend pegasus-transfer to pull image from Docker Hub and then export it as tar file,
that can be shipped around in the workflow.

• Ensure pegasus worker package gets installed at runtime inside the user
container.

Pegasus http://pegasus.isi.edu 22

Pegasus http://pegasus.isi.edu 23

Pegasus
dashboard

web interface for monitoring

and debugging workflows

Real-time monitoring of

workflow executions. It shows

the status of the workflows and

jobs, job characteristics, statistics

and performance metrics.

Provenance data is stored into a

relational database.

Real-time Monitoring

Reporting

Debugging

Troubleshooting

RESTful API

Pegasus http://pegasus.isi.edu 24

Pegasus
dashboard

web interface for monitoring

and debugging workflows

Real-time monitoring of

workflow executions. It shows

the status of the workflows and

jobs, job characteristics, statistics

and performance metrics.

Provenance data is stored into a

relational database.

Pegasus
dashboard

web interface for monitoring

and debugging workflows

http://pegasus.isi.edu 25Pegasus

command-line…

Provenance data can be summarized

pegasus-statistics

or used for debugging

pegasus-analyzer

$ pegasus-status pegasus/examples/split/run0001

STAT IN_STATE JOB

Run 00:39 split-0 (/home/pegasus/examples/split/run0001)

Idle 00:03 ┗━split_ID0000001
Summary: 2 Condor jobs total (I:1 R:1)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME

14 0 0 1 0 2 0 11.8 Running *split-0.dag

$ pegasus-statistics –s all pegasus/examples/split/run0001

--

Type Succeeded Failed Incomplete Total Retries Total+Retries

Tasks 5 0 0 5 0 5

Jobs 17 0 0 17 0 17

Sub-Workflows 0 0 0 0 0 0

--

Workflow wall time : 2 mins, 6 secs

Workflow cumulative job wall time : 38 secs

Cumulative job wall time as seen from submit side : 42 secs

Workflow cumulative job badput wall time :

Cumulative job badput wall time as seen from submit side :

$ pegasus-analyzer pegasus/examples/split/run0001

pegasus-analyzer: initializing...

****************************Summary***************************

Total jobs : 7 (100.00%)

jobs succeeded : 7 (100.00%)

jobs failed : 0 (0.00%)

jobs unsubmitted : 0 (0.00%)

>_

Pegasus
Automate, recover, and debug scientific computations.

Get Started

Pegasus Website

http://pegasus.isi.edu

Users Mailing List

pegasus-users@isi.edu

Support

pegasus-support@isi.edu

HipChatPegasus Online Office Hours

https://pegasus.isi.edu/blog/online-pegasus-office-hours/

Bi-monthly basis on second Friday of

the month, where we address user

questions and also apprise the

community of new developments

OUTLINE

Pegasus 27http://pegasus.isi.edu

Scientific Workflows

Pegasus Overview

Successful Stories

Introduction

Pegasus Overview Basic Concepts

Features

System Architecture

Features Data Staging

Information Catalogs

Fault-Tolerance

10min BreakBreak

Hands On Tutorial

Pegasus http://pegasus.isi.edu 28

Understanding Pegasus features…

Pegasus http://pegasus.isi.edu 29

So, what information does Pegasus need?

Site Catalog
describes the sites

where the workflow

jobs are to be executed

Transformation Catalog

describes all of the executables

(called “transformations”) used

by the workflow

Replica Catalog
describes all of the

input data stored on

external servers

Pegasus http://pegasus.isi.edu 30

How does Pegasus decide where to execute?

site description

describes the compute resources

storage

tells where output data is stored

site catalog

transformation catalog

replica catalog

<!-- The local site contains information about the submit host -->

<!-- The arch and os keywords are used to match binaries in the -->

<!-- transformation catalog -->

<site handle="local" arch="x86_64" os="LINUX">

<!-- These are the paths on the submit host were Pegasus stores data -->

<!-- Scratch is where temporary files go -->

<directory type="shared-scratch" path="/home/tutorial/run">

<file-server operation="all" url="file:///home/tutorial/run"/>

</directory>

<!-- Storage is where pegasus stores output files -->

<directory type="local-storage" path="/home/tutorial/outputs">

<file-server operation="all" url="file:///home/tutorial/outputs"/>

</directory>

<!-- This profile tells Pegasus where to find the user's private key -->

<!-- for SCP transfers -->

<profile namespace="env" key="SSH_PRIVATE_KEY">

/home/tutorial/.ssh/id_rsa

</profile>

</site>

scratch

tells where temporary data is stored

profiles

key-pair values associated per job level

Pegasus http://pegasus.isi.edu 31

How does it know where the executables are or which ones to use?

executables description

list of executables locations per site

physical executables

site catalog

transformation catalog

replica catalog

...

This is the transformation catalog. It lists information about

each of the executables that are used by the workflow.

tr ls {

site PegasusVM {

pfn "/bin/ls"

arch "x86_64"

os "linux"

type "INSTALLED”

}

}

...
transformation type

whether it is installed or

available to stage

mapped from logical transformations

Pegasus http://pegasus.isi.edu 32

What if data is not local to the submit host?

logical filename

abstract data name

physical filename

site catalog

transformation catalog

replica catalog

This is the replica catalog. It lists information about each of the

input files used by the workflow. You can use this to specify locations to

input files present on external servers.

The format is:

LFN PFN site="SITE"

f.a file:///home/tutorial/examples/diamond/input/f.a site="local"

site name

in which site the file is available

data physical location on site

different transfer protocols

can be used (e.g., scp, http,

ftp, gridFTP, etc.)

Pegasus http://pegasus.isi.edu 33

site catalog

transformation catalog

replica catalog

Replica catalog

multiple sources

pegasus.conf

Add Replica selection options so that it will try URLs first, then

XrootD for OSG, then gridftp, then anything else

pegasus.selector.replica=Regex

pegasus.selector.replica.regex.rank.1=file:///cvmfs/.*

pegasus.selector.replica.regex.rank.2=file://.*

pegasus.selector.replica.regex.rank.3=root://.*

pegasus.selector.replica.regex.rank.4=gridftp://.*

pegasus.selector.replica.regex.rank.5=.*

This is the replica catalog. It lists information about each of the

input files used by the workflow. You can use this to specify locations

to input files present on external servers.

The format is:

LFN PFN site="SITE"

f.a file:///cvmfs/oasis.opensciencegrid.org/diamond/input/f.a site=“cvmfs"

f.a file:///local-storage/diamond/input/f.a site=“prestaged“

f.a gridftp://storage.mysite/edu/examples/diamond/input/f.a site=“storage"

rc.data

http://pegasus.isi.edu 34

Data Staging Configurations

Pegasus

HTCondor I/O (HTCondor pools, OSG, …)

Worker nodes do not share a file system

Data is pulled from / pushed to the submit host via HTCondor file transfers

Staging site is the submit host

Non-shared File System (clouds, OSG, …)

Worker nodes do not share a file system

Data is pulled / pushed from a staging site, possibly not co-located with the computation

Shared File System (HPC sites, XSEDE, Campus clusters, …)

I/O is directly against the shared file system

http://pegasus.isi.edu 35Pegasus

shared

filesystem

submit host

(e.g., user’s laptop)

There are several possible

configurations…

typically most HPC sites

High Performance

Computing

http://pegasus.isi.edu 36Pegasus

object

storage

submit host

(e.g., user’s laptop)

high-scalable object storages

Typical cloud computing deployment (Amazon

S3,

Google Storage)

Cloud Computing

http://pegasus.isi.edu 37Pegasus

submit host

(e.g., user’s laptop)

local data management

Typical OSG sites

Open Science Grid

Grid Computing

http://pegasus.isi.edu 38Pegasus

shared

filesystem

submit host

(e.g., user’s laptop)

And yes… you can mix everything!

Compute site B

Compute site A

object storage

Pegasus http://pegasus.isi.edu 39

Running workflows on AWS

There are many different ways to set up an execution environment in
Amazon EC2

The simplest way is to use a submit machine outside the cloud, and to
provision several worker nodes and a file server node in the cloud

1. Launch the VM (Condor Worker) – requires configuration

2. The VM will appear as a new compute resource

3. Spawn job to the cloud VM

4. VMs shutdown itself in the absence of work

Guidelines for Tutorial VM:

https://pegasus.isi.edu/documentation/vm_amazon.php

https://pegasus.isi.edu/documentation/vm_amazon.php

http://pegasus.isi.eduPegasus

pegasus-transfer

Directory creation, file removal

If protocol supports, used for cleanup

Two stage transfers

e.g., GridFTP to S3 = GridFTP to local file, local file to S3

Parallel transfers

Automatic retries

Credential management

Uses the appropriate credential for each site and each protocol (even 3rd party transfers)

HTTP

SCP

GridFTP

Globus Online

iRods

Amazon S3

Google Storage

SRM

FDT

stashcp

cp

ln -s

Pegasus’ internal data transfer tool with support for a number of different protocols

Pegasus http://pegasus.isi.edu 41

And if a job fails?

Job Failure Detection

detects non-zero exit code

output parsing for success or failure message

exceeded timeout

do not produced expected output files

Job Retry

helps with transient failures

set number of retries per job and run

Rescue DAGs

workflow can be restarted from checkpoint file

recover from failures with minimal loss

Checkpoint Files

job generates checkpoint files

staging of checkpoint files is

automatic on restarts

Pegasus http://pegasus.isi.edu 42

A few more features…

Data registration

Output files get tagged with
metadata on registration in the
workflow database

since

Pegasus 4.6

Pegasus http://pegasus.isi.edu 43

Metadata
Can associate arbitrary key-value pairs

with workflows, jobs, and files

Static and runtime metadata

Static: application parameters

Runtime: performance metrics

workflow,

job, file

select data

based on metadata

register data

with metadata

Pegasus http://pegasus.isi.edu 44

Performance, why not improve it?

clustered job

Groups small jobs together

to improve performance

task

small granularity

workflow restructuring

workflow reduction

pegasus-mpi-cluster

hierarchical workflows

Pegasus http://pegasus.isi.edu 45

What about data reuse?

data already

available

Jobs which output data is

already available are pruned

from the DAG

data reuse

workflow restructuring

workflow reduction

pegasus-mpi-cluster

hierarchical workflows

workflow

reduction

data also

available

data reuse

http://pegasus.isi.edu 46

Pegasus also handles large-scale workflows

pegasus-mpi-cluster

recursion ends

when DAX with

only compute jobs

is encountered

sub-workflow

sub-workflow

workflow restructuring

workflow reduction

hierarchical workflows

Pegasus http://pegasus.isi.edu 47

Running fine-grained workflows on HPC systems…

pegasus-mpi-cluster

HPC System
submit host

(e.g., user’s laptop)

workflow wrapped as an MPI job

Allows sub-graphs of a Pegasus workflow to be

submitted as monolithic jobs to remote resources

workflow restructuring

workflow reduction

hierarchical workflows

Pegasus
Automate, recover, and debug scientific computations.

Get Started

Pegasus Website

http://pegasus.isi.edu

Users Mailing List

pegasus-users@isi.edu

Support

pegasus-support@isi.edu

HipChatPegasus Online Office Hours

https://pegasus.isi.edu/blog/online-pegasus-office-hours/

Bi-monthly basis on second Friday of

the month, where we address user

questions and also apprise the

community of new developments

OUTLINE

Pegasus 49http://pegasus.isi.edu

Scientific Workflows

Pegasus Overview

Successful Stories

Introduction

Pegasus Overview Basic Concepts

Features

System Architecture

Features Data Staging

Information Catalogs

Fault-Tolerance

10min BreakBreak

Hands On Tutorial

Pegasus http://pegasus.isi.edu 50

Hands-On Pegasus Tutorial…

Pegasus Tutorial

• SSH to our training machine

• You need to be connected to the ‘utk-open’ network

• Login with your user’s tutorial login and password

ssh pegtrain42@workflow.isi.edu

Pegasus http://pegasus.isi.edu 51

Split Workflow Execution Steps

• Step 1: Change directory to split workflow dir
cd ~/tutorial/split_example

• Step 2: Generate the Pegasus DAX file
./daxgen.py split.dax

• Step 3: Plan and submit the split workflow
./plan_dax.sh split.dax

• Step 4: Observe the progress of the workflow
watch pegasus-status -l submit/USERNAME/pegasus/split_wf/run0001

Pegasus http://pegasus.isi.edu 52

Pegasus Dashboard

• Step 1: Change workflow db permissions

chmod –R 755 ~/.pegasus

• Step 2: Go to your browser and open
https://workflow.isi.edu:8443

• Step 3: Login with your user’s tutorial login and password

Pegasus http://pegasus.isi.edu 53

NAMD Workflow Execution Steps

• Step 1: Change directory to namd workflow dir
cd ~/tutorial/namd_example

• Step 2: Generate the Pegasus DAX file
./daxgen.py namd.dax

• Step 3: Plan and submit the namd workflow
./plan_dax.sh namd.dax

• Step 4: Observe the progress of the workflow
watch pegasus-status -l submit/USERNAME/pegasus/namd_wf/run0001

Pegasus http://pegasus.isi.edu 54

http://pegasus.isi.edu

NAMD Workflow With Docker
• Step 1: Create a docker image with NAMD pre-installed

There is already on here: https://hub.docker.com/r/papajim/namd_image

• Step 2: Edit the transformation catalog to use docker

cont namd_image {

type “docker”

image “docker:///papajim/namd_image:latest”

}

tr namd {

site condorpool {

container “namd_image”

pfn “file:///opt/NAMD_2.12_Linux-x86_64-multicore/namd2”

arch “x86_64”

os “LINUX”

type “INSTALLED”

}}

Pegasus 55

https://hub.docker.com/r/papajim/namd_image

NAMD Workflow With Docker

• Step 3: Change directory to namd workflow dir
cd ~/tutorial/namd_docker

• Step 4: Generate the Pegasus DAX file
./daxgen.py namd.dax

• Step 5: Plan and submit the namd workflow
./plan_dax.sh namd.dax

• Step 6: Observe the progress of the workflow
watch pegasus-status –l submit/USERNAME/pegasus/namd_wf/run0001

Pegasus http://pegasus.isi.edu 56

Jupyter Notebook

• Go to https://workflow.isi.edu:8000
• Login with your user’s tutorial login and password

• Click the button to Launch the Jupyter server

• Open the folder ‘jupyter’

• Launch the ‘Pegasus-DAX3-Tutorial.ipynb’ notebook

• Instructions on how to execute the notebook
• Update the ‘workflow_dir’ variable with your training account name

• Update the ‘replica catalog’ entry with your training account name

Pegasus http://pegasus.isi.edu 57

rc = ReplicaCatalog(workflow_dir)

rc.add('pegasus.html', ‘file:///scitech/home/pegtrain42/jupyter/pegasus.html', site='local')

workflow_dir = '/scitech/home/pegtrain42/jupyter/wf-split-tutorial’

https://workflow.isi.edu:8000/

NAMD Workflow Execution Steps (NERSC)

• Step 1: Retrieve myproxy credential from NERSC
myproxy-logon -s nerscca.nersc.gov:7512 -t 24 -T -l NERSC_USER

• Step 2: Change directory to namd workflow dir
cd ~/tutorial/namd_example

• Step 3: Edit “plan_dax.sh” and
update the execution site

pegasus-plan \

--conf pegasus.properties \

--dax $DAXFILE \

--dir $DIR/submit \

--input-dir $DIR/input \

--output-dir $DIR/output \

--sites nersc \

--cleanup leaf \

--force \

--submit

Pegasus http://pegasus.isi.edu 58

NAMD Workflow Execution Steps (NERSC)

• Step 4: Update sites catalog with your NERSC scratch folder

• Step 5: Generate the Pegasus DAX file
./daxgen_nersc.py namd_nersc.dax

• Step 6: Plan and submit the namd workflow
./plan_dax.sh namd_nersc.dax

• Step 7: Observe the progress of the workflow
watch pegasus-status -l submit/USERNAME/pegasus/namd_wf/run0002

Pegasus http://pegasus.isi.edu 59

<directory type="shared-scratch" path="YOUR_SHARED_SCRATCH_DIR">

<file-server operation="all“ url="gsiftp://corigrid.nersc.gov/YOUR_SHARED_SCRATCH_DIR"/>

</directory>

	Slide Number 1
	OUTLINE
	OUTLINE
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Advanced LIGO �PyCBC Workflow
	Slide Number 9
	Impact on DOE Science
	Slide Number 11
	OUTLINE
	Slide Number 13
	Key Pegasus Concepts
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Running Pegasus workflows with Jupyter
	Pegasus-Jupyter Python API
	Slide Number 20
	Data Management for Containers
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	OUTLINE
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	pegasus-transfer
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	OUTLINE
	Slide Number 50
	Pegasus Tutorial
	Split Workflow Execution Steps
	Pegasus Dashboard
	NAMD Workflow Execution Steps
	NAMD Workflow With Docker
	NAMD Workflow With Docker
	Jupyter Notebook
	NAMD Workflow Execution Steps (NERSC)
	NAMD Workflow Execution Steps (NERSC)

