
Compute Pipelines using Pegasus Workflows:

An Introduction

Karan	Vahi	
vahi@isi.edu	

h"ps://pegasus.isi.edu	

Pegasus h"p://pegasus.isi.edu	
2	

Compute Pipelines –
Building Blocks

Challenges scientists face while developing
pipelines

Portability
How can you run a pipeline on Amazon EC2 one
day, and a PBS cluster the next?

Data Management
How do you ship in the small/large amounts data
required by your pipeline?
Different protocols: Can I use SRM? How about
GridFTP? HTTP and Squid proxies?
Can I use Cloud based storage like S3 on EC2?

Debug and Monitor Computations.
Users need automated tools to go through the log
files
Need to correlate data across lots of log files
Need to know what host a job ran on and how it
was invoked

Restructure Pipelines for Improved Performance
Short running tasks?
Data placement? �

Pegasus h"p://pegasus.isi.edu	 3	

Automate	

Recover	

Debug	

Why Pegasus?

Automates complex, multi-stage processing pipelines

Enables parallel, distributed computations

Automatically executes data transfers

Reusable, aids reproducibility

Records how data was produced (provenance)

Provides to tools to handle and debug failures

Keeps track of data and files

NSF funded project since 2001, with close
Collaboration with HTCondor team.

Portable: Describe once; execute multiple times

Key Pegasus Concepts

Pegasus	WMS	==	Pegasus	planner	(mapper)	+	DAGMan	workflow	engine	+	
																																HTCondor	scheduler/broker	+	Pegasus	Monitoring	layer	

•  Pegasus	maps	workflows	to	infrastructure	
•  DAGMan	manages	dependencies	and	reliability	
•  HTCondor	is	used	as	a	broker	to	interface	with	different	schedulers	
•  Monitoring	layer	parses	condor	logs	and	puts	them	in	a	relaMonal	database	

	

Workflows	are	DAGs	(or	hierarchical	DAGs)	
•  Nodes:	jobs,	edges:	dependencies	
•  No	while	loops,	no	condiMonal	branches	

	

Planning	occurs	ahead	of	execuMon	
•  (Except	hierarchical	workflows)	

	

Planning	converts	an	abstract	workflow	into	an	executable	workflow	
•  Planner	is	like	a	workflow	compiler.	Compiles	user	workflows	to	target	execuMon	environment.	

Pegasus h"p://pegasus.isi.edu	 4	

Pegasus h"p://pegasus.isi.edu	
5	

Taking a closer look into a Pegasus workflow…

Compute jobs

dependency
Usually	data	dependencies	

split

merge

pipeline

Command-line	programs	

DAG directed-acyclic graphs

abstract workflow

executable workflow

storage constraints

opMmizaMons	

Pegasus input workflow description

Looks very similar to how users
describe their pipelines

Only identifies computation steps,
devoid of resource descriptions and
data locations

File aware For each node you
specify the input and output files
by use of logical identifiers

DAX DAG in XML

Pegasus h"p://pegasus.isi.edu	 6	

From the
abstraction
to execution!

stage-in job

stage-out job

registration job

Transfers	the	workflow	input	data	

Transfers	the	workflow	output	data	

Registers	the	workflow	output	data	

abstract workflow

executable workflow

storage constraints

opMmizaMons	

Pegasus h"p://pegasus.isi.edu	 7	

Optimizing storage
usage…

cleanup job
Removes	unused	data	

abstract workflow

executable workflow

storage constraints

opMmizaMons	

Pegasus h"p://pegasus.isi.edu	 8	

Pegasus also provides tools to�
generate the abstract workflow

DAX DAG in XML

world

hello

f.a

f.b

f.c

P l a n

create

dir
SI

f.a

f.a

hello

f.b

world

f.c

SO

f.c

Reg

f.c

RM

f.a

RM

f.b

RM

f.c

Pegasus h"p://pegasus.isi.edu	 9	

So, what information does Pegasus need?

Site	Catalog	

describes	the	sites	where	

the	workflow	jobs	are	to	

be	executed	

Transforma?on	Catalog	

describes	all	of	the	executables	

(called	“transformaMons”)	used	

by	the	workflow	

Replica	Catalog	

describes	all	of	the	input	data		

stored	on	external	servers	

Pegasus h"p://pegasus.isi.edu	 10	

Pegasus
dashboard

web	interface	for	monitoring	

and	debugging	workflows	

Real-Mme	monitoring	of	

workflow	execuMons.	It	shows	

the	status	of	the	workflows	and	

jobs,	job	characterisMcs,	staMsMcs	

and	performance	metrics.	

Provenance	data	is	stored	into	a	

relaMonal	database.	

Real-Mme	Monitoring	

ReporMng	

Debugging	

TroubleshooMng	

RESTful	API	

h"p://pegasus.isi.edu	 11	Pegasus

But, if you prefer the command-line…

…Pegasus provides
a set of concise

and powerful tools

$ pegasus-status pegasus/examples/split/run0001
STAT IN_STATE JOB
Run 00:39 split-0 (/home/pegasus/examples/split/run0001)
Idle 00:03 ┗━split_ID0000001
Summary: 2 Condor jobs total (I:1 R:1)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 14 0 0 1 0 2 0 11.8 Running *split-0.dag

$ pegasus-statistics –s all pegasus/examples/split/run0001
--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 5 0 0 5 0 5

Jobs 17 0 0 17 0 17
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 2 mins, 6 secs
Workflow cumulative job wall time : 38 secs

Cumulative job wall time as seen from submit side : 42 secs
Workflow cumulative job badput wall time :
Cumulative job badput wall time as seen from submit side :

$ pegasus-analyzer pegasus/examples/split/run0001
pegasus-analyzer: initializing...

****************************Summary***************************

Total jobs : 7 (100.00%)
jobs succeeded : 7 (100.00%)
jobs failed : 0 (0.00%)
jobs unsubmitted : 0 (0.00%)

>_	

Pegasus h"p://pegasus.isi.edu	 12	

And if a job fails?

Job	Failure	Detec?on	

detects	non-zero	exit	code	

output	parsing	for	success	or	failure	message	

exceeded	Mmeout	

do	not	produced	expected	output	files	
Job	Retry	

helps	with	transient	failures	

set	number	of	retries	per	job	and	run	

Rescue	DAGs	

workflow	can	be	restarted	from	checkpoint	file	

recover	from	failures	with	minimal	loss	

Checkpoint	Files	

job	generates	checkpoint	files	

staging	of	checkpoint	files	is		

automaMc	on	restarts	

pe
ga

su
s-

ki
ck

st
ar

t

Data Staging Configurations

•  Condor	I/O	(HTCondor	pools,	OSG,	…)	
•  Worker	nodes	do	not	share	a	file	system	

•  Data	is	pulled	from	/	pushed	to	the	submit	host	via	HTCondor	file	transfers	

•  Staging	site	is	the	submit	host	
	

•  Non-shared	File	System	(clouds,	OSG,	…)	
•  Worker	nodes	do	not	share	a	file	system	

•  Data	is	pulled	/	pushed	from	a	staging	site,	possibly	not	co-located	with	the	
computaMon	
	

•  Shared	File	System	(HPC	sites,	XSEDE,	Campus	clusters,	…)	
•  I/O	is	directly	against	the	shared	file	system	

pegasus-transfer
•  Pegasus’	internal	data	transfer	tool	

•  Supports	many	different	protocols	

•  Directory	creaMon,	file	removal	
•  If	protocol	supports,	used	for	cleanup	

•  Two	stage	transfers	
•  e.g.	GridFTP	to	S3	=	GridFTP	to	local	file,	local	file	to	S3	

•  Parallel	transfers	

•  AutomaMc	retries	

•  Checkpoint	and	restart	transfers	

•  CredenMal	management	
•  Uses	the	appropriate	credenMal	for	each	site	and	each	
protocol	(even	3rd	party	transfers)	

Protocols	
-  HTTP	

-  SCP	

-  GridFTP	

-  iRods	

-  Amazon	S3	

-  Google	Storage	

-  SRM	

-  FDT	

-  stashcp	

-  cp	

-  ln	-s	

	

Pegasus h"p://pegasus.isi.edu	 16	

A few more features…

Pegasus h"p://pegasus.isi.edu	 17	

Performance, why
not improve it?

clustered job
Groups	small	jobs	together	

to	improve	performance	

task
small	granularity	

workflow restructuring

workflow reduction

hierarchical workflows

Pegasus h"p://pegasus.isi.edu	 18	

What about data reuse?

data already �
available

Jobs	which	output	data	is		

already	available	are	pruned	

from	the	DAG	

data reuse

workflow restructuring

workflow reduction

hierarchical workflows

workflow �
reduction

data also�
available

data reuse

h"p://pegasus.isi.edu	 19	

Pegasus also handles
large-scale workflows

pegasus-mpi-cluster

recursion ends
when DAX with�
only compute jobs�
is encountered

sub-workflow

sub-workflow

workflow restructuring

workflow reduction

hierarchical workflows

Advanced LIGO – Laser Interferometer
Gravita5onal Wave Observatory

60,000	compute	tasks	

Input	Data:	5000	files	(10GB	total)	

Output	Data:	60,000	files	(60GB	total)	

executed	on	LIGO	Data	Grid,	

Open	Science	Grid	and	XSEDE	

Advanced LIGO
PyCBC Workflow

•  One of the main pipelines to measure the
statistical significance of data needed for
discovery.

•  Contains 100’s of thousands of jobs and
accesses on order of terabytes of data.

•  Uses data from multiple detectors.

•  For the detection, the pipeline was executed on
Syracuse and Albert Einstein Institute Hannover

•  A single run of the binary black hole + binary
neutron star search through the O1 data (about 3
calendar months of data with 50% duty cycle)
requires a workflow with 194,364 jobs.
Generating the final O1 results with all the review
required for the first discovery took about 20
million core hours

21
PyCBC Papers: An	improved	pipeline	to	search	for	gravitaMonal	waves	from	compact	binary	coalescence.	Samantha	Usman,	Duncan	Brown	et	al.	

																																	The	PyCBC	search	for	gravitaMonal	waves	from	compact	binary	coalescence,	Samantha	Usman	et	al	(hlps://arxiv.org/abs/1508.02357)	

PyCBC	Detec6on	GW150914:	First	results	from	the	search	for	binary	black	hole	coalescence	with	Advanced	LIGO.	B. P. Abbott et al.

Benefits to LIGO provided by Pegasus- Expanded
Compu5ng Horizons

•  No	longer	limited	to	a	single	execuMon	resource	
•  Non	Pegasus	LIGO	pipelines	can	omen	only	run	on	LIGO	clusters	
•  Input	is	replicated	out	of	band	,	in	a	rigid	directory	layout.		
•  Rely	on	the	shared	filesystem	to	access	data.	
	

•  Pegasus	made	it	possible	to	leverage	Non	LDG	CompuMng	Resources	
	

•  Open	Science	Grid		
•  Dynamic	–	Best	Effort	Resource	with	no	shared	filesystem	available	

•  Large	NSF	SupercompuMng	Clusters	XSEDE	
•  No	HTCondor	
•  Geared	for	Large	MPI	jobs,	not	thousands	of	single	node	jobs	

•  LIGO	tried	to	setup	XSEDE	cluster	as	a	LDG	site	but	mismatch	in	setup.	

•  Pegasus	enabled	LIGO	to	use	XSEDE	without	changes	at	LIGO	or	at	XSEDE	

•  VIRGO	Resources	in	Europe	
•  Clusters	with	no	shared	filesystem	and	different	storage	management	infrastructure	than	LDG	

•  No	HTCondor	

h"p://pegasus.isi.edu	 23	

Automated Quality Control Workflows for NIMH-NRGR

Pipeline to automate quality
control checks on incoming
phenotypic data to the center

Earlier curation process was
manual done by analysts at
the center, that was often
error prone

Web based system developed on
top of Pegasus WMS by the
center.

The NIMH Repository and Genomics Resource (NIMH-RGR) is large NIH funded center that
facilitates psychiatric genetic research by providing a collection of over 150,000 well
characterized, high quality patient and control bio-samples.

https://www.nimhgenetics.org/submit_data/

Pegasus h"p://pegasus.isi.edu	 24	

http://soykb.org
XSEDE	Alloca6on	

PI:	Dong	Xu	

Trup6	Joshi,	Saad	Kahn,	Yang	Liu,	Juexin	Wang,	Badu	Valliyodan,	Jiaojiao	Wang	

hlps://github.com/pegasus-isi/Soybean-Workflow	

Pegasus 25	

TACC Wrangler as Execution
Environment	

Flash Based Shared Storage�

Switched to glideins (pilot jobs) - Brings in remote
compute nodes and joins them to the HTCondor pool on
in the submit host - Workflow runs at a finer
granularity

Works well on Wrangler due to more cores and memory
per node (48 cores, 128 GB RAM)

Pegasus
Automate,	recover,	and	debug	scienMfic	computaMons.		

Get Started

Pegasus	Website	

hlp://pegasus.isi.edu	

Users	Mailing	List	

pegasus-users@isi.edu	

Support	

pegasus-support@isi.edu	

HipChat	

est. 2001

Pegasus
Automate,	recover,	and	debug	scienMfic	computaMons.		

Thank You

Questions?
Mats	Rynge	

rynge@isi.edu	

Karan	Vahi	

Rafael	Ferreira	da	Silva	

Rajiv	Mayani	

Mats	Rynge	

Ewa	Deelman	

Meet our team

est. 2001

