
On the Use of Burst Buffers for Accelerating
Data-Intensive Scientific Workflows

Rafael Ferreira da Silva, Scott Callaghan, Ewa Deelman

12th Workflows in Support of Large-Scale Science (WORKS) – SuperComputing’17
November 13, 2017

Funded by the US Department of Energy under Grant #DE-SC0012636

OUTLINE

Introduction Burst Buffers Model and Design

Workflow Application Experimental Results

Next-generation Supercomputers
Data-intensive Workflows

In-transit / In-situ

Overview
Node-local / Remote-shared

NERSC BB

BB Reservations
Execution Directory

I/O Read Operations

Overall Write/Read Operations
I/O Performance per Process

Cumulative CPU Time
Rupture Files

CyberShake
Workflow Implementation

I/O Performance: Darshan

2

Conclusion

Summary of Findings
Future Directions

A Brief Introduction and Contextualization

3

Traditionally,

Workflows	have	used	the	file	system	to	

communicate	data	between	tasks

To	cope	with	increasing	application	demands	on	

I/O	operations,	solutions	targeting in	situ and/or	

in	transit processing	have	become	mainstream	

approaches	to	attenuate	I/O	performance	

bottlenecks.

”

Next-generation of Exascale Supercomputers

Increased	processing	capabilities	to	over	1018 Flop/s

Memory and	disk capacity	will	also	be	significantly	increased

Power consumption	management

I/O	performance	of	the	parallel	file	system	(PFS)	is	not	

expected	to	improve	much	

Data-Intensive Scientific Workflows

4

While	in	situ is	well	adapted	for	computations	that	conform	with	the	data	

distribution imposed	by	simulations,	in	transit	processing	targets	applications	

where	intensive	data	transfers are	required

1000	Genome	WorkflowCyberShake Workflow

Consumers/produces	over	

4.4TB of	data,	and	

requires	over	24TB of	

memory	across	all	tasks

Consumers/produces	

over	700GB of	data

Improving I/O Performance with Burst Buffers

5

Burst	buffers	have	emerged	as	a	non-volatile	storage solution	that	is	

positioned	between	the	processors’	memory	and	the	PFS,	buffering	

the	large	volume	of	data	produced	by	the	application	at	an	higher	

rate	than	the	PFS,	while	seamlessly	draining	the	data	to	the	PFS	

asynchronously.

In Transit Processing

Placement	of	the	burst	buffer	nodes	within	the	

Cori system	(NERSC)

A	burst	buffer	consists	of	the	combination	of	rapidly	

accessed	persistent	memory	with	its	own	processing	

power	(e.g.,	DRAM),	and	a	block	of	symmetric	

multi-processor	compute	accessible	through	high-

bandwidth	links	(e.g.,	PCI	Express)

”

Node-local	vs	Remote-shared

Xeon Processor / DRAM

x8 PCIe

x8 PCIe
Flash SSD card

CN

Burst Buffer

Node

Storage Servers

CN CN CN
Compute

Nodes

x16 PCIe

x8 PCIe

Aries

Storage Area Network

First Burst Buffers Use at Scale

6

Cori	is	a	petascale HPC	system	and	#6	on	the	June	2017	Top500	list

NERSC	BB	is	based	on	Cray	DataWarp

(Cray’s	implementation	of	the	BB	concept)

Cori System (NERSC)

Architectural	overview	of	a	burst-buffer	node	

on	Cori	at	NERSC

Each	BB	node	contains	a	Xeon processor,	64	GB	of	DDR3

memory,	and	two	3.2	TB	NAND ash	SSD	modules	attached	over	

two	PCIe gen3	x8 interfaces,	which	is	attached	to	a	Cray	Aries	

network	interconnect	over	a	PCIe gen3	x16	interface

~6.5	GB/sec	of	

sequential	read	and	

write	bandwidth

Model and Design: Enabling BB in Workflow Systems

7

Automated BB Reservations

BB	reservations	operations	(either	persistent	or	scratch)	

consist	in	the	creation and	release,	as	well	as	stage	in and	

stage	out	operations

Transient	reservations:	needs	to	implement	stage	in/out	

operations	at	the	beginning/end	of	each	job	execution Execution Directory

Automated	mapping between	the	workflow	execution	

directory and	the	BB	reservation

No	changes	to	the	application	code	are	necessary,	

and	the	application	job	directly	writes	its	output	to	

the	BB	reservation
I/O Read Operations

Read	operations	from	the	BB	should	be	transparent	to	

the	applications

Approaches: point	the	execution	directory	to	the	

BB	reservation,	or	create	symbolic	links to	data	

endpoints	into	the	BB

Workflow Application: CyberShake Workflow

8

CyberShake is	a	high-performance	computing	software	that	uses	3D	waveform	

modeling	to	calculate	PSHA	estimates	for	populated	areas	of	California

Constructs	and	Populates	a	3D	mesh	of	~1.2	billion	elements with	seismic	velocity	

data	to	compute	Strain	Green	Tensors	(SGTs)

Post-processing: SGTs	are	convolved	with	slip	time	histories	for	each	of	about	

500,000	different	earthquakes to	generate	synthetic	seismograms	for	each	event

CyberShake Workflow

CyberShake hazard	map	for	Southern	California,	

showing	the	spectral	accelerations	at	a	2-second	

period	exceeded	with	a	probability	of	2%	in	50	years

We	focus	on	the	two	CyberShake job	types	which	together	

account	for	97%	of	the	compute	time:	the	wave	propagation	

code	AWP-ODC-SGT,	and	the	post-processing	code	DirectSynth

Burst Buffers: Workflow Implementation

9

Workflow	is	composed	of	two	tightly-coupled	parallel	

jobs	(SGT_generator;	and	direct_synth),	and	two	

system	jobs	(bb_setup and	bb_delete)	

Generates/consumes	about	550GB of	data

Pegasus WMS

A	general	representation	of	the	CyberShake

test	workflow

bb_setup

direct_synthdirect_synthdirect_synthdirect_synth

direct_synthdirect_synthdirect_synthSGT_generator

bb_delete

Control flow

Data flow

fx.sgt fx.sgtheader fy.sgt fy.sgtheader

seismogram rotd peakvals

https://github.com/rafaelfsilva/bb-workflow

#SBATCH -p regular

#SBATCH -N 64

#SBATCH -C haswell

#SBATCH -t 05:00:00

#DW persistentdw name=csbb

#SBATCH -p debug

#SBATCH -N 1

#SBATCH -C haswell

#SBATCH -t 00:05:00

#BB create_persistent name=csbb capacity=700GB access=striped type=scratch

bb_setup job
Goes	through	the	regular

queuing	processing

Collecting I/O Performance Data with Darshan

10

HPC	lightweight	I/O	profiling tool	that	captures	an	accurate	picture	

of	I/O	behavior	(including	POSIX	IO,	MPI-IO,	and	HDF5	IO)	in	MPI	

applications

Darshan: HPC I/O Characterization Tool

Darshan is	part	of	the	default	software	stack	on	Cori

0

2500

5000

7500

10000

1 4 8 16 32 64 128 256 313

Nodes

M
iB

/s

BB no−BB

Experimental Results: Overall Write Operations

11

Average	I/O	performance	

estimate	for	write	operations	at	

the	MPI-IO	layer	(left),	and	

average	I/O	write	performance	

gain	(right)	for	the	

SGT_generator job

• Overall,	write	operations	to	the	PFS	(No-BB)	

have	nearly	constant I/O	performance

• No-BB:	~900	MiB/s regardless	of	the	

number	of	nodes	used

• Base	values	obtained	for	the	BB	executions (1	node,	

32	cores)	are	over	4,600	MiB/s,	and	peak	values	

scale	up	to	∼8,	200	MiB/s for	32	nodes	(1,024	cores)

• Slight	drop in	the	I/O	performance	(#nodes	≥	64)

large	number	of	concurrent	write	operations

0.75

1.00

1.25

1.50

1.75

1 4 8 16 32 64 128 256 313

nodes

P
e
rf

o
rm

a
n
c
e
 G

a
in

BB no−BB

Experimental Results: Overall Read Operations

12

I/O	performance	estimate	for	

read	operations	at	the	MPI-IO	

layer	(left),	and	average	I/O	

write	performance	gain	(right)	

for	the	direct_synth job

• I/O	read	operations	from	the	PFS yield	similar	

performance	regardless	of	the	number	of	nodes	

used:	~500	MiB/s

• BB:	single-node	performance	of	4,000	MiB/s,	

peak	values	up	to	about	8,000	MiB/s

• Small	drop	in	the	performance	for	runs	using	

64	nodes	or	above	– may	indicate	an	I/O	

bottleneck when	draining	the	data	to/from	

the	underlying	parallel	file	system

0

2500

5000

7500

1 4 8 16 32 64 128

Nodes

M
iB

/s

BB No−BB

0.5

1.0

1.5

2.0

1 4 8 16 32 64 128

nodes

P
e
rf

o
rm

a
n
c
e
 G

a
in

BB No−BB

Experimental Results: I/O Performance per Process

13

POSIXmodule	data:	Average	time	consumed	in	I/O	read	

operations	per	process	for	the	direct_synth job

• POSIX	operations (left)	represent	buffering	and	

synchronization	operations	with	the	system

• POSIX	values	are	negligible	when	compared	to	

the	job’s	total	runtime	(~8h	for	64	nodes)

• MPI-IO:	BB	accelerates I/O	read	operations	up	to	10	

times in	average

• for	larger	configurations	(≥	32	node),	the	average	

time	is	nearly	the	same	as	when	running	with	16	

nodes	for	the	No-BB	

fx.sgt fy.sgt

1 4 8 16 32 64 128 1 4 8 16 32 64 128

0

1

2

3

Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

BB No−BB

fx.sgt fy.sgt

1 4 8 16 32 64 128 1 4 8 16 32 64 128

0

500

1000

1500

2000

Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

BB No−BB

MPI-IOmodule	data:	Average	time	consumed	in	I/O	read	

operations	per	process	for	the	direct_synth job

14

Ratio	between	the	cumulative	time	spent	in	the	user	(utime)	

and	kernel	(stime)	spaces	for	the	direct_synth job,	for	different	

numbers	of	nodes

• Averaged	values	(for	up	to	thousands	of	cores)	may	

mask	slower	processes

In	some	cases,	e.g.	64	nodes,	slowest	time	

consumed	in	I/O	read	operations	can	slowdown	

the	application	up	to	12	times the	averaged	

value

• Ratio	between	the	time	spent	in	the	user	(utime)	and	

kernel	(stime)	spaces	– handling	I/O-related	

interruptions,	etc.

• Performance	at	64	nodes	is similar	to	32	nodes,	

suggesting	gains	in application parallel	efficiency	

would	outweigh	a	slight	I/O	performance	hit at	64	

nodes	and	lead	to	decreased	overall	runtime

Experimental Results: Cumulative CPU Time

BB No−BB

1 4 8 16 32 64 128 1 4 8 16 32 64 128

0

25

50

75

100

Nodes

C
u
m

u
la

ti
ve

 C
P

U
 t
im

e
 u

s
a
g
e
 (

%
)

stime utime

15

Ratio	between	the	cumulative	time	spent	in	the	user	(utime)	

and	kernel	(stime)	spaces	for	the	direct_synth job	for	different	

numbers	of	rupture	files	(workflow	runs	with	64	nodes)

• A	typical	execution	of	the	CyberShake

workflow	for	a	selected	site	in	our	

experiment	processes	about	5,700	rupture	

files

• The	processing	of	rupture	files	drive	most	of	

the	CPU	(user	space)	activities	for	the	

direct_synth job

• The	use	of	a	BB	attenuates (about	15%)	the	

I/O	processing	time	of	the	workflow	jobs,	

for	both	read	and	write	operations

Experimental Results: Rupture Files

BB No−BB

1 10 100 1000 2500 5700 1 10 100 1000 2500 5700

0

25

50

75

100

Rupture Files

C
u
m

u
la

ti
ve

 C
P

U
 t
im

e
 u

s
a
g
e
 (

%
)

stime utime

16

Major	Findings

• I/O	write performance	was	improved by	a	factor	of	9,	

and	I/O	read performance	by	a	factor	of	15

• Performance	decreased	slightly at	node	counts	above	

64 (potential	I/O	ceiling)

• I/O	performance	must	be	balanced with	parallel	

efficiency	when	using	burst	buffers	with	highly	

parallel	applications

• I/O	contentionmay	limit the	broad	applicability	of	

burst	buffers	for	all	workflow	applications	(e.g.,	in	situ	

processing)

Conclusion and Future Work

What’s	Next?

• Solutions	such	as	I/O-aware	scheduling	or	in	

situ	processing	may	also	not	fulfill	all	

application	requirements

We	intend	to	investigate	the	use	of	

combined	in	situ	and	in	transit	analysis

• Development	of	a	production	solution	for	the	

Pegasus	workflow	management	system

ON THE USE OF BURST BUFFERS FOR ACCELERATING
DATA-INTENSIVE SCIENTIFIC WORKFLOWS

Rafael Ferreira da Silva, Ph.D.
Research Assistant Professor, Computer Science Department
Computer Scientist, USC Information Sciences Institute

rafsilva@isi.edu – http://rafaelsilva.com

Thank You

Questions?

Funded by the US
Department of Energy under

Grant #DE-SC0012636

