

Pegasus – Enhancing LIGO DAGMan Experience

Karan Vahi

Science Automation Technologies Group USC Information Sciences Institute

Information Sciences Institute

LIGO Gravitational Wave Detection

- LIGO recently announced first ever detection of gravitational waves.
 - Created as a result of coalescence of a pair of dense, massive black holes.
 - Confirms major prediction of Einstein Theory of Relativity

Detection Event

School of Engineering

- Detected by both of the operational Advanced LIGO detectors (4km long L shaped interferometers)
- Event occurred at September 14, 2015 at 5:51 a.m. Eastern Daylight Time

Detection Paper: Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. 116, 061102 – Published 11 February 2016 **Image Credits:** 0.2 Second before the black holes collide: SXS/LIGO Signals of Gravitational Waves Detected: Caltech/MIT/LIGO Lab

LIGO Detection – Behind the Scenes

- A variety of complex analysis pipelines were executed.
- Some were low latency that initially alerted people to look at a specific piece of data containing the signal.
- However, to verify that signal is a valid candidate,
 - a large amount of data needs to be analyzed.
 - Statistical significance of the detection should be at 5-sigma level
- Pipelines are mainly executed on LSC Data Grid
 - Consists of approximately 11 large clusters at various LIGO institutions and affiliates
 - Each cluster has Grid middleware and HTCondor installed.
 - GridFTP used for data transfers.
- Pipelines are modeled as scientific workflows

Advanced LIGO PyCBC Workflow

- One of the main pipelines to measure the statistical significance of data needed for discovery.
- Contains 100's of thousands of jobs and accesses on order of terabytes of data.
- Uses data from multiple detectors.
- Exclusively managed by Pegasus WMS and an earlier version was used for the blind injection test in 2011
- For the detection, the pipeline was executed on Syracuse and Albert Einstein Institute Hannover

PyCBC Paper: An improved pipeline to search for gravitational waves from compact binary coalescence. Samantha Usman, Duncan Brown et al.

PyCBC Detection GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. B. P. Abbott et al.

Pegasus Workflow Management System

NSF funded project since 2001

 Developed as a collaboration between USC Information Sciences Institute and the HTCondor Team at UW Madison

Builds on top of HTCondor DAGMan.

Abstract Workflows - Pegasus input workflow description

- Workflow "high-level language"
- Only identifies the computation, devoid of resource descriptions, devoid of data locations
- File Aware For each task you specify the input and output files

Pegasus is a workflow "compiler" (plan/map)

- Target is DAGMan DAGs and Condor submit files
- Transforms the workflow for performance and reliability
- Automatically locates physical locations for both workflow components and data
- Collects runtime provenance

School of Engineering

Pegasus Deployment

Benefits to LIGO provided by Pegasus- Expanded Computing Horizons

- No longer limited to a single execution resource
 - Non Pegasus LIGO pipelines can often only run on LIGO clusters
 - Input is replicated out of band , in a rigid directory layout.
 - Rely on the shared filesystem to access data.
- Made it possible to leverage Non LDG Computing Resources
 - Open Science Grid
 - Dynamic Best Effort Resource with no shared filesystem available
 - Large NSF Supercomputing Clusters XSEDE
 - No HTCondor
 - Geared for Large MPI jobs, not thousands of single node jobs
 - LIGO tried to setup XSEDE cluster as a LDG site but mismatch in setup.
 - Pegasus enabled LIGO to use XSEDE without changes at LIGO or at XSEDE
 - VIRGO Resources in Europe
 - Clusters with no shared filesystem and different storage management infrastructure than LDG
 - No HTCondor

Pegasus enables users to run workflows across different computing environments!

Data Flow for LIGO Pegasus Workflows in OSG

LIGO on XSEDE

Problem: Many scientific workflows are fine-grained

- Thousands of tasks
- Short duration
- Serial
- Collectively, these tasks require distributed resources to finish in a reasonable time, but individually they are relatively small
 - Touch many GB or TB of data
 - Consume thousands of CPU hours
- Many large-scale compute resources are optimized for a few, large, parallel jobs, not many small, serial jobs
 - Serial tasks face long queue times due to low priority
 - Batch schedulers have low throughput

Results in poor workflow performance

Pegasus MPI Cluster

Solution: Pegasus-MPI-Cluster

- A master/worker task scheduler for running fine-grained workflows on batch systems
- Runs as an MPI job

School of Engineering

- Uses MPI to implement master/worker protocol
- Allows sub-graphs of a Pegasus workflow to be submitted as monolithic jobs to remote resources

Benefits to LIGO provided by Pegasus- Smart Data Management

- Automated Discovery of Data
 - Symlink against locally available inputs
 - Fallback to remote file servers if data not available locally
 - Support for retrieving data using various protocols

Automated Cleanup of Data

- Data that is no longer required is automatically cleaned up.
- Reduces peak storage requirements.

Data Reuse

- If output data is already computed or exists, Pegasus automatically prunes the pipeline accordingly
- Reduces amount of computing resources used!
- Job Checkpoint Files
 - Long running jobs write out checkpoint files that are managed by Pegasus
 - Can run long running jobs on sites where limits on runtime of a single job.

Reusing Data Products

Solution: Workflow Reduction

- Don't execute jobs at runtime for which data products already exist.
- Similar to make style semantics for compiling code

File cleanup

- Solution
 - Do cleanup after workflows finish
 - Does not work as the scratch may get filled much before during execution
 - Interleave cleanup automatically during workflow execution.
 - Requires an analysis of the workflow to determine, when a file is no longer required

 Cluster the cleanup jobs by level for large cleanup job workflows

• Too many cleanup jobs adversaly affect the walltime of the workflow.

Benefits to LIGO provided by Pegasus-

Performance Improvements

Task Clustering

- LIGO workflows are mix of long running and short running tasks.
- Pegasus clusters short running tasks into larger chunks to overcome scheduling overheads.
- LIGO used Pegasus MPI Cluster framework for running large workflows on XSEDE.
 - Sub graphs of Pegasus Workflows submitted to remote resources as single MPI job.

Separation of Directories

- Non Pegasus LIGO pipelines rely on the shared filesystem of clusters
- Use of Pegasus allowed workflow submit directories to be moved to local filesystems

Benefits to LIGO provided by Pegasus- Monitoring and Debugging

- Failure Recovery
 - Automatic retry of failed jobs as a workflow is running
 - Workflows can be restarted from they left off
- Debug and Monitor Workflows
 - Users need automated tools to go through the log files
 - Need to correlate data across lots of log files
 - Need to know what host a job ran on and how it was invoked
- Pegasus Dashboard
 - Used by LIGO users to monitor and debug workflows
- Especially useful for LIGO users because of the size of their workflows!

Workflow Wall Time	5 days 1 hour	
Workflow Cumulative Job Wall Time	2065 days 10 hours	
Cumulative Job Walltime as seen from Submit Side	2066 days 23 hours	
Workflow Cumulative Badput Time	56 mins 32 secs	
Cumulative Job Badput Walitime as seen from Submit Side	1 hour 32 secs	
Workflow Retries	5	

Workflow Listing Page Shows Successful, Failed and Running Workflows

Submit Host

sugar-dev2.phy.syr.edu

sugar-dev2.phy.syr.edu

sugar-dev2.phy.syr.edu

sugar-dev2.phy.syr.edu

sugar-dev2.phy.syr.edu

sugar-dev2.phy.syr.edu

sugar-dev2.phy.syr.edu

sugar-dev2.phy.syr.edu

4

Showing 11 to 18 of 18 entries (filtered from 33 total entries)

~

how results for all

how 10 0 entries

Workflow Label

analysis2-C01-injections

analysis8-C01-injections

analysis7-C01-injections

analysis3-C01-injections

analysis4-C01-injections

analysis5-C01-injections

analysis6-C01-injections

analysis9-C01-injections

Successful: 19

0

Search: injections

Submitted On

Sat, 06 Feb 2016 13:27:15

Mon. 08 Feb 2016 15:25:05

Mon, 08 Feb 2016 11:45:22 Tue, 23 Feb 2016 16:27:30

Tue, 23 Feb 2016 16:27:44

Wed, 24 Feb 2016 11:49:17 Wed, 24 Feb 2016 11:55:55

Wed, 24 Feb 2016 12:07:11

First Previous 1 2 Next Last

-09-23

Failed: 0

State

Successful

Successful

Successful

Running

Running

Running

Running

Running

Running Failed Successful

Submit Directory

/usr1/amber.lenon/pycbc-tmp.4a07mk2LXe/work

/usr1/amber.lenon/pycbc-tmp.cqBQirspEl/work

/usr1/amber.lenon/pycbc-tmp.tpHketeH7X/work

/usr1/amber.lenon/pycbc-tmp.LU6iToRyVA/work

/usr1/amber.lenon/pycbc-tmp.gArV7UNU9C/work

/usr1/amber.lenon/pycbc-tmp.d95VFhwkKu/work

/usr1/amber.lenon/pycbc-tmp.O1anUn5hGE/work

/usr1/amber.lenon/pycbc-tmp.Lf2hB7UTuG/work

Workflow Statistics Workflow Statistics

Show <u>10 c</u> entries Search:								
Transformation	Count :	Succeeded +	Failed 🗧	Min ÷	Max 🗢	Mean ©	Total	
dagman::post	15301	14819	482	5	554	9.607	146993	
inspiral-FULL_DATA-H1_ID9	7621	7620	1	901.357	20055.080	12507.034	95318108.773	
inspiral-FULL_DATA-L1_ID10	6641	6640	1	1589.662	19566.902	12504.586	83042955.049	
pegasus::transfer	108	108	0	0	205.304	9.664	1043.731	
coinc-FULL_DATA_FULL-H1L1_JD14	20	20	0	263.256	348.672	297.379	5947.588	
pegasus::dirmanager	7	7	o	0	5	2.857	20	
condor::dagman	6	6	0	607	833	700.167	4201	
dagman::pre	6	6	0	11	75	27.167	163	
single_template-P1_0-H1_ID5	5	5	0	360.602	383.866	373.194	1865.968	
single_template_plot-P1_0-H1_ID6	5	5	0	4.013	8.382	5.008	25.041	
Showing 1 to 10 of 314 entries					First Previo	us 1 2 3 4	5 32 Next La	s

+ Job Statistics

· Job Distribution

Charts

Job Distributio

School of Engineering

Pegasus LIGO Collaboration - Timeline

- 2001 Griphyn (Grid Physics Network) funded. Pegasus development started
- 2002 Pegasus LIGO demonstration at SC 2002 highlighting Virtual Data
- 2002 HPDC paper on Griphyn and LIGO focusing on Virtual Data
- 2003 Support for LDR Globus RLS based LIGO data discovery service
- 2004 Development of replica selection strategies to optimize data access on LIGO Data Grid
- 2004 Long term collaboration with LIGO for running workflows on OSG
- 2005 Use of task clustering for performance improvements
- 2006 Development of cleanup algorithm to reduce peak storage requirements
- 2010 Hierarchal Workflows used by LIGO iHope workflows
- 2010 Developed pegasus-analyzer a workflow debugging tool
- 2010-2011 Pegasus managed iHope workflows used for blind injection test
- 2012 Enabled LIGO iHope workflows to use VIRGO computing resources
- 2013 Introduced Pegasus Dashboard for LIGO users
- 2014 Enabled LIGO to leverage XSEDE for computations
- 2015 Pegasus managed pyCBC workflows used to verify gravitational wave detection

LIGO Pegasus – What's Next

- Continued use of Pegasus to detect other interesting events
- Support for Metadata
 - Automatic collection of static and runtime metadata attributes
 - Accessible via Pegasus Dashboard
 - Use for smarter data reuse identifying what are the existing relevant data sets
- Automatic organization of files in efficient directory structure
 - Having thousands of files in a directory degrades filesystem performance.
 - Pegasus will automatically place them in a hierarchal data organization.
- Increased use of Open Science Grid
 - Seamless overflow of jobs to OSG
 - Improved Data Discovery
- Improved error debugging and analysis via dashboard

Automate, recover, and debug scientific computations.

Pegasus est. 2001

Automate, recover, and debug scientific computations.

Thank You

Questions?

Acknowledgements

LIGO – Duncan Brown, Stuart Anderson, Larne Pekowsky, Alex Nitz, Peter Couvares and many others.

Meet our team

Ewa Deelman

Karan Vahi

Gideon Juve

Mats Rynge

Rajiv Mayani

Rafael Ferreira da Silva

