Complex Workloads on HUBzero -
Pegasus Workflow Management
System

Karan Vahi

Science Automation Technologies Group
USC Information Sciences Institute

USC \flterbl Information Sciences Institute

School of Eng

HubZero

= A valuable platform for scientific researchers
— For building analysis tools and sharing with researchers and educators.
— Made available to the community via a web browser

= Supports interfaces for
— Designing Analysis tools using the Rappture Toolkit
— Uploading and creating inputs
— Visualizing and plotting generated outputs

= Supports hundreds of analysis tools and thousands of users.

USC V1terb1 |

School of Eng

Hubzero - Scalability

= Execution of the analysis tools for all users cannot be
managed on the HubZero instance

* Need to decouple the analysis composition and user
interaction layer from backend execution resources

= Scalability requires a need to support multiple types of

execution backends
* Local Campus Cluster
« DiaGrid
» Distributed Computational Grids such as Open Science Grid
« Computational Clouds like Amazon EC2

USC V1terb1 |

School of Eng

Distributing Analysis - Challenges

= Portability

— Some Hubs are tied to local clusters. Others are connected to distributed
computational grids. How do we get the analysis tool to run on local PBS cluster
one day and OSG the next, or run across them.

= Data Management
— How do you ship in the small/large amounts data required by the analysis tool?

— You upload inputs via the web browser, but the analysis runs on a node in a
cluster.

— Different protocols for different sites: Can | use SRM? How about GridFTP?
HTTP and Squid proxies?

= Debug and Monitor Computations
— Users need automated tools to go through the log files
— Need to correlate data across lots of log files
— Need to know what host a job ran on and how it was invoked

= Restructure Analysis Steps for Improved Performance

— Short running tasks or tightly coupled tasks
Run on local cluster a hub is connected to.

— Data placement?

USC Viterbi

School of Engineering

HubZero — Separation of concerns

= Focus on user interface and provide users

— means to design, launch analysis steps and inspect and visualize
outputs

= Model analysis tools as scientific workflows

= Use a Workflow Management System to manage
computation across varied execution resources.

USC V1terb1 |

School of Eng

Scientific Workflows

= Orchestrate complex, multi-stage scientific computations
= Often expressed as directed acyclic graphs (DAGS)
= Capture analysis pipelines for sharing and reuse

= Can execute in parallel on distributed resources

Setup -
Split {

Filter &
Convert

Map
Merge <

Analyze {

USC Viterbi

School of Engineering

Why Scientific Workflows?

= Automate complex processing pipelines

= Support parallel, distributed computations
= Use existing codes, no rewrites

= Relatively simple to construct

= Reusable, aid reproducibility

= Can be shared with others

= Capture provenance of data

USC V1terb1 |

School of Eng

Pegasus Workflow Management System (WMS)

= Under development since 2001

= A collaboration between USC/ISI and the Condor Team at UW
Madison

— USC/ISI develops Pegasus
— UW Madison develops DAGMan and Condor

= Maps abstract workflows to diverse computing infrastructure
— Desktop, Condor Pool, HPC Cluster, Grid, Cloud

= Actively used by many applications in a variety of domains
— Earth science, physics, astronomy, bioinformatics

USC V1terb1 |

School of Eng

Benefits of workflows in the Hub

= Clean separations for users/developers/operator
— User: Nice high level interface via Rappture

— Tool developer: Only has to build/provide a description of
the workflow (DAX)

— Hub operator: Ties the Hub to an existing distributed
computing infrastructure (DiaGrid, OSG, ...)

= The Hub Submit and Pegasus handle low level
details

— Job scheduling to various execution environments
— Data staging in a distributed environment

— Job retries

— Workflow analysis

— Support for large workflows

USC Viterbi

School of Engineering

Pegasus Workflows are Directed Acyclic Graphs

= Nodes are tasks
— Typically, executables with arguments.

— Each executable identified by a unique logical identifier e.g. fft ,
date, fast_split

— Nodes can also be other workflows

= File Aware
— With each node you specify specify the input and
output files referred to by logical identifiers.

= Edges are dependencies
— Represent data flow
— Can also be control dependencies
— Pegasus can infer edges from data use

= No loops, no branches
— Recursion is possible
— Can generate workflows in a workflow
— Can conditionally skip tasks with wrapper

= Captures computational recipe, devoid of resource
descriptions, devoid of data locations, that is
portable and can be easily shared.

USCViterbi

School of Engineering

Abstract to Executable Workflow Mapping

Pegasus compiles the Abstract Workflow to an Executable Workflow
that can be executed on varied distributed execution environments Abstraction provides

Abstract Workflow

USCViterbi

Executable Workflow

LEGEND
O Unmapped Job

. Compute Job
mapped to a site

Stage-in Job
Stage-Out Job

Registration Job

Make Dir Job
Cleanup Job

— Ease of Use (do not need to worry
about low-level execution details)

— Portability (can use the same
workflow description to run on a
number of resources and/or across
them)

— Gives opportunities for
optimization and fault tolerance

« automatically restructure the
workflow

« automatically provide fault
recovery (retry, choose
different resource)

Pegasus Guarantee -
Wherever and whenever a
job runs it’s inputs will be in
the directory where it is
launched.

School of Engineering

Supported Data Staging Approaches - |

Shared Filesystem setup (typical of XSEDE and HPC sites)

= Worker nodes and the head node have
a shared filesystem, usually a parallel M

filesystem with great 1/O characteristics | Submit < W

— : Host
= (Can leverage symlinking against
existing datasets

= Staging site is the shared-fs.

HPC Cluster Compute Site

Non-shared filesystem setup with staging site (typical of OSG and EC 2)

= Worker nodes don’t share a filesystem.
= Data is pulled from / pushed to the Submit

e < Staging
existing storage element. Host \m(.....

= A separate staging site such as S3 Compute Site| Amazon
EC2 with S3

HubZero uses Pegasus to run a single application
worklow across sites, leveraging shared filesystem at Jobs ——

local PBS cluster and non shared filesystem setup at Data --------- >
OSG!

USCV1terb1 |

School of Eng

Supported Data Staging Approaches - I

Condor 10 (Typical of large Condor Pools like CHTC) Sltl"ggt"t

= Worker nodes don’t share a filesystem
= Symlink against datasets available locally
AA

= Data is pulled from / pushed to the i
submit host via Condor file transfers \ |

= Staging site is the submit host. Jobs - ——> ﬁ m
Data --------- >

Compute Site

Supported Transfer Protocols — for directory/file
creation and removal, file transfers

= HTTP Using Pegasus allows you to move from one
SC_CF;FTP deployment to another without changing the

| r| - u

. IRODS workflow description!

= S3/Google Cloud Storage _

= Condor File 1O pegasus-transfer, pegasgs-create-dlr, pegasus-

- File Copy cleanup support client discovery, parallel transfers,

= OSG Stash retries, and many other things to improve transfer

USCV1terb1 |

performance and reliability

School of Eng

Workflow Reduction (Data Reuse)

f.out

File f.d exists somewhere.
Abstract Workflow Reuse it.

Mark Jobs D and B to delete Delete Job D and Job B

Useful when you have done a part of computation and then realize the
need to change the structure.

USC V1terb1 |

»ol of Eng

File cleanup

* Problem: Running out of disk space during workflow execution

= Why does it occur
— Workflows could bring in huge amounts of data
— Data is generated during workflow execution
— Users don’ t worry about cleaning up after they are done

= Solution
— Do cleanup after workflows finish
» Add a leaf Cleanup Job

— Interleave cleanup automatically during workflow execution.
» Requires an analysis of the workflow to determine, when a file is no longer required

— Cluster the cleanup jobs by level for large workflows

Real Life Example: Used by a UCLA genomics researcher to delete TB’s
of data automatically for long running workflows!!

USC Viterbi

School of Engineering

File cleanup (cont)

. ‘ .‘i
w
o
o

225
o
E
=
£
™
g 150
o
'S
-
»
o
0.75
0.00
0 8 16 24 32

Time (hours)

= Cleanup === No Cleanup

Single SoyKB NGS Pegasus Workflow with 10 input reads.

USC V1terb1 |

School of Eng

Workflow Restructuring to improve application performance

= Cluster small running jobs together to achieve better
performance

= Why?
— Each job has scheduling overhead — need to make this overhead
worthwhile
— ldeally users should run a job on the grid that takes at least 10/30/60/7?
minutes to execute
— Clustered tasks can reuse common input data — less data transfers

e o
0000 0000
©o o0

6666

e

Horizontal clustering Label-based clustering

USCVlterb1 ,

School of Eng

Workflow Monitoring - Stampede

= Leverage Stampede Monitoring framework with DB backend

— Populates data at runtime. A background daemon monitors the logs files and
populates information about the workflow to a database

— Stores workflow structure, and runtime stats for each task.

= Tools for querying the monitoring framework

— pegasus-status
« Status of the workflow

— pegasus-statistics
» Detailed statistics about your finished workflow

— Integrated into Hub infrastructure via the submit integration

Type Succeeded Failed 1Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002

Jobs 4529 0 0 4529 0 4529

Sub-workflows 2 0 0 2 0 2

workflow wall time : 13 hrs, 2 mins, (46973 secs)
workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)

Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

USC Viterbi

School of Engineering

Workflow Debugging Through Pegasus

= After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary
of the run

= pegasus-analyzer's output contains

— a brief summary section
« showing how many jobs have succeeded
« and how many have failed.

— For each failed job
« showing its last known state
« exitcode
» working directory
 the location of its submit, output, and error files.
 any stdout and stderr from the job.

Integrated with Submit . Alleviates the need for searching through lots of
logs files and integrated with submit command.

USC V1terb1 |

School of Eng

Different Types of Analysis tools on HubZero

= Parameter Sweep Analysis
— Execute independent analysis steps on a set of input data, and merge the

data and inspect it
= Sequential Analysis

— Execute analysis steps sequentially one after the other, with each step
taking in the input of the previous steps.

= DAG based analysis

— Multistage analysis where each stage can be a single job or multiple
stages

USC V1terb1 |

School of Eng

Hubzero Pegasus Integration

USC V1terb1 |

»ol of Eng

How to generate the workflow

= Tool description file tool.xml specifies a python run script
(driver file) called by the Rappture interface when you hit
the submit button

Two options on how to generate the DAX in python run script

1. Use the Pegasus Python DAX API to generate the DAX in the run
script

2. Call out to an external application-specific DAX generator

= Compose the workflow programmatically and launch it

using the Hub command line interfaces (Workspaces +
submit).

USC V1terb1 |

School of Eng

@ TRELREIRERERD User interaction with Pegasus enabled
U LoGIC analysis tool - BLASTer

a) Reads input
from the GUI
Develops

Rappture Tool b) Generates
Pegasus DAX
Description MWiapper.py 9
¢) Submit to Hub
\ / Infrastructure e
0SG COMPUTE
CLUSTER 1
COMPUTE
INFRASTRUCTURE
HUB 3
e & ’ (x)
s Ta e T b ouis TRt 3 Workflow submitted)
v | A0 0l 00 s B st using HUB submit Worker Node
pramend 0SG COMPUTE

CLUSTERN

| e saraining BT by,

Betiu £vatnh okt 2 Clicking submit
| Famtace tcten button runs
- 1A Tatabane: :.: o] Jas pame e staecmd e Wrapper. py /
covin Suae = ot gsanne e i s = 2o |
z -
s T bt v e caraning S

| Custm Dutatane Feomt Hiessrrer T} | Bl Hle o n drtavute.Glif seiive & N
i auery s, N

Bttty Vidw: 0

[e | e | | G PEGASUS
wMS

1 Prepares Input

\ / DIAGRID
6 Final Outputs N 3
appear in togl ul 5 Monitoring 4 Jobs execution)
USER Information
G
e 7 =2 W)
e O R e ~0x s
el | W deinns | DDSWOROI. % | LR NS G Weiema | Ganrchen L Mlett Db S BB DI S
blastx (DiaGrid) (2015-09-11 3:22 PM) e vsoe [T | e blastx (DiaGrid) (2015-09-11 3:22 PM) wwewes [T | el Worker Node
] P cun S on || | sm=E] s inayte oo Eromey
Pty »
LOULY Sonich Jatx Mrishee O

Diskaraa Uesdt 18,73 vk
AL Slee J0IAKE
U § N KR

Ry Thre:
CrUTh 2

10 €8S) B 1 T) DAL 20 30 b

sorer It AVt
[

[Liomrietri sovacxis®
wwnwse b L}

& Bewmcas aichine

Acknowledgements: Steven Clark , Chris Thomson and Derrick Kearney, Purdue University

Data Flow for Hub Workflows through Pegasus on OSG

with GlideinWMS and Staging Storage Element

(OSG COMPUTE ELEMENT - 1

Head Node

Pegasus

Lite

&

8

Instance

3

Head Node

F)SG COMPUTE ELEMENT- n

Pegasus
Lite 3
Instance

N
N
N
o
Y =
-~

P 2

e —-—

LEGEND

USCViterbi

School of Engineering

‘ Directory Setup Job . Data Stageout Job
O Data Stagein Job . Directory Cleanup Job

APPLICATION INPUT

/ HUB WORKFLOW HOST

DATA SERVER
(OPTIONAL)
SRM
GridFTP
|
poos Abstract
. Workflow
;.'
Executes On | 4
Submit Host .
”I ’l,,‘ “. Pegas“s
;o H Planner
'] '
] ,’ :
4 0SG STAGING E
T STORAGE ELEMENT '
i1 , { Workflow
| Supports independent li Setup \
e protocols for the NPUT FILES UPLOADED Job _"
GET GET and PUT interfaces THROUGH THE
_~| INTERFACE RAPPTURE
T T WEB INTERFACE Wor‘kﬂ9w
Ul Stagein
Wl Job
i
X i 4%
DA A -
PUT Protocols Supported: Executable
_ 47| INTERFACE Workflow
SRM WORKFLOW OUTPUT
J SrdETe FILES PRESENTED TO
. HTTP THE USER THROUGH
I 'RgSDS RAPPTURE INTERFACE
1
\ SCP f
¢ |
) |
8 |
\\] Workflow
= / Stageout
ExecutesOn P | o ob
SubmitHost & =~ ~ T 77 %t:uriec:;r e
Cleanup

W
Condor
DAGMan

Pegasus Tutorial tool now available in HUBZero

A

eI
Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

®xml version="1,0"?>
{runy
<{tool>
Tool ¢titledHello World Workflowd/title)
(j(}f;()ri ti()r] <zbout>Simple interface for Pegasus Hello World example</zbout>
<command>python Btool/wrapper.py Bdriver</copgand
P Gtool> Rappture (data
— Linput> . =g
" note> definitions) and
<contents>files/Aworkflow, html</contents

Unoted describes the generated
{ztring id="textinput"> .
Inputs ripefbe " user interface
<label>Your Name</label>
{description’Enter your namel/description>
</about>
{default>Petel/default>
{/string>
- <Ainput>
— <output?
{string id="greeting">
{about>
<label>Greeting</label>
<description>Greeting generated by the two jobs submitted to the grid through
{/about>
{/string’
{string id="fa">
{about;
{label>f.al/label>
O u t p u t S — - d::cr iption>Input to Hello job</dezcription>
{/about>
{/string’
{string id="fb">
{about>>
{label>f . bi/label>

m {description>Output from sayhi job<{/description>
7 e &N
{/about>

. . ' mdindinm\

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Wrapper.py

= Python script that is the glue
between Rappture and user

= Collects the data from the
Rappture interface

= Generates the DAX
= Runs the workflow

= Presents the outputs to
Rappture

a
MAIN PROGRAM - generated by the Rappture Builder
#

import sys
import os
from math import *

import Rappture
from Rappture,tools import getCommandOutput == RapptureExec
from Pegasus,DAX3 import *

open the XML file containing the run parameters
io = Rappture,library(sys,arqv[1])

setup paths to our executables

scriptpath = os,path.realpath{__file__)

scriptdir = os,path.dirname(scriptpath)

tooldir = os,path,dirname{scriptdir)

sayhipath = os,path,join({tooldir, 'bin', 'sayhi,sh')
inquirepath = os,path, join{tooldir, 'bin', 'inquire,sh')

HHH R R R R R R R

Get input values from Rappture
HEHHHHHHHHHH S

get input value for input,string(textinput)
textinput = io,get('input,string(textinput),current')
b textinput:
sys,stderr,write("Input data is missingn")
sys,exit{1)

HHEHE R R R R R R R R R R

Add your code here for the main body of your program
HEHHHHHHHHHHEHHH I HH R H HH I H R R R e

fp = open('f.a','w'

e

fp.urite(textinput + 'Sn')
fp.close()

sys.stderr write("Could not create datafilein")

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Rappture (workflow definition)

Create a abstract dag
dax = ADAG("sayhi_inquire")

Add input file to the DAX-level replica catalog
a = File("f,a")
a,addPFN(PFN("file://" + os,getcud() + "/f.a", "local"))

dax,addFile(a)
f-a # Add executables to the DAX-level replica catalog
e_sayhi = Executable{namespace="sayhi_inquire", name="sayhi", version="1,0", %
os="linux", arch="x86_B4", installed=False)
e_sayhi,addPFN(PFN("file://" + sayhipath, "condorpool"))
dax,addExecutable(e_sayhi)
e_inquire = Executable(namespace="sayhi_inquire", name="inquire", version="1,0", %
b os="linux", arch="x86_64", installed=Falze)

e_inquire,addPFN(PFN("file://" + inquirepath, "condorpool"))
dax,addExecutablele_inquire)

' # Add the sayhi job
inquire sayhi = Job(namespace="sayhi_inquire", name="sayhi", version="1,0")
, sayhi ,addArguments('f.a')

b = File("f.b")

sayhi,uses(a, link=Link,INPUT)
sayhi ,uses(b, link=Link,OUTPUT)
dax, addJob{sayhi)

Add the inquire job (depends on the sayhi job)
inquire = Job{namespace="sayhi_inquire", name="inquire", version="1,0")
inquire,addArguments('f,b"')
c = File("f.c")
Abstract Workflow inquire,uses(b, link=Link,INPUT)
inquire,uses{c, link=Link,0UTPUT)
dax,addJob{inquire)

Add control-flow dependencies
mdax.addDependencg(Dependencg(parent=sa9hi , child=inquire)) !

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

User provides inputs to the workflow and clicks the “Submit”
button

. Simulat A t t w About this tool
Hello World with Pegasus e e ’ Questions?
Hello Word Workflow
With Pegasus, you can hook together multiple
executables and pass data between them. In this Simple interface for Pegasus Hello World example
example, two executables are used to build a
greeting.

To start, enter your name below. After pressing
the Simulate button, the information is saved in
the file named f.a, and passed to the sayhi
program. sayhi prints a specialized hello message
for you. The greeting is saved in the file named fh
and sent to the inquiry program. inquiry finishes
the greeting by asking how you are doing.

rh
.
o

sayhi
Y This job is executed on the grid using Pegasus

and Submit!

‘_I@m

h
o

Leam about software that powers this tool:

- Pegasus Workflow Mahagement System

- Rappture Toolkit

inquire * Submit

._I«m

Give it a try:

Enter

Your

Name Then

Hare Press
Simulate
Up There

Hh
0

[

Your Name: |Pete

1) A -
Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Workflow has completed. Outputs are available for browsing/downloading

Hello World with Pegasus

With Pegasus, you can hook together multiple
executables and pass data between them. In this
example, two executables are used to build a
greeting.

£.a To start, enter your name helow. After pressing
the Simulate button, the information is saved in
the file named f.a, and passed to the sayhi
program. sayhi prints a specialized hello message
for you. The greeting is saved in the file named f.b
and sent to the inquiry program. inquiry finishes

the greeting by asking how you are doing.

This joh is executed on the grid using Pegasus
and Submit!

Leam about software that powers this tool:

- Pedgasus Workflow Management System
- Rappture Toolkit

Give it a try:

Enter
Your
Name Then
Here Press
Simulate
Up There

Your Name: |Pete

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

About this tool
Questions
Result:{f.c 7 @
Greeting | —
Hello |4
fh
Analysis
Run metrics
Download
Find: | Select All |
1 result Clear
a

Submit Command

Used by Rappture interface to submit the workflow

Submits the workflow through Pegasus to
— 0SG

— DIAGRID

— Local Cluster

Prepares the site catalog and other configuration
files for Pegasus

Uses pegasus-status to track the workflow

Generates statistics and report about job failures
using pegasus tools.

— Error reports in file pegasus.analysis

— Job statistics and status pegasusjobstats.csv pegasusstatus.txt

A

Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Examples of Pegasus Usage in
Hubs

USC Viterbi
School of Engineering

Pegasus on Hub Platforms

= Using Workspaces
— Pegasus installed on all hubs

— Users can directly submit and compose workflows through
Pegasus and execute on OSG, DiaGrid.

= |ntegrated into published tools on various Hubs
— Various tools in NanoHub, DiaGrid, NEESHub

A

eI
Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Pegasus on Hub Platforms

Using Workspaces
— Pegasus and submit installed on all hubs

— Bsers_,dcan directly submit and compose workflows through Pegasus and execute on OSG,
iagrid.

Nanohub
— Perform parameter sweep on variables (CNTFET Lab, nanoFET, NanoPlasiticity)
— Jobs are executed on Open Science Grid and DiaGrid
— CNTFET Lab - Simulates using carbon nanotubes as field effect transistors

— nanoFET - Simulates 2D mosfet devices.

— NanoPlasticity - Investigates how nano-crystalline materials deform, includes uncertainty
quantification.

DiaGrid
— BLASTer - online tool to run BLAST (Basic Local Alignment Search Tool) on the
DiaGrid Hub.

— Cryo-EM - Electron cryo-microscopy (cryo-EM) for 3-D structure of large macromolecular
machines

— SubmitR - Run R scripts on high-performance computing resources.
NEESHub

— OpenSEES - suite of simulation tools for submitting NEES scripts and for education and
outreach.

b . ’{

wifid
Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Pegasus on Hub Platforms

PP T— el b el . i
[T [7 Jeiont S @St (> KRGl e Teees @ o
Samgle] Elestic Constants | Plesticty | Loasng Canditions | Uncanainty Gugntinzaion] Running simulalier: el [Respare (Vouryicias v PEeriEreres) Bl
al 51 e ,_22635655¢. hAES
This tool is used to i the dary and dislocation-medlated deformatiol unto) sweep - REEZ
mechanisms In nanocrystalline metals. The modal Is bnsed on & muti phase field model In which dislocation & ‘ﬁﬂg{ (e e R e oy b B e) @ u
and grain boundary sliding are represented by means of scalar phase fields described in = Ihe role of gralﬂ ;me_ 1586 0 i TAZ Subnitted at WP DiaGrid Wed Sop 4 19 26 40 2 U o
boundary energetics on the maximum strength of nanocrystalline Ni”, Koslowski, Lee and Lei, Journ ‘llﬁ 155 =J AR m:.mrq‘:: weo;'m;;:gﬁ \'a: 5“.; ‘o 19’;2?&50 nms) 51
Sowllation " -3 id Pac Sep 3 |
Aot Cheen at Salids S VI B0, 2T FIUS1258 1) SLmiation Mcwing o AoDiobr ol oud $es |3 13.50. 58 015 & 5]
Eurgers vachr [Singla value H =
sy 3 iM' §' = =
Bumars vactor anm :o | | i_,
Sheal sass N P I - - T I - 2
=2 e
sep— anoPlasticity Tool in : 1=
PPt _~ ¥ s 3 ey
/ P 7 7 g »
/ 2= @32 —
A // NanoHub
/ t s 7 N I
P 7 7 / AN H
/ £ / 4 i
o 7 = S
di= @32 shaar shass Is, i 0%
i) GEAYIesE &
Motz Tre current varsion of this tool recures o1 =62=43 Zleal

Abar '

Sinulats: » e

a) Specify and configure simulation b) Workflow Executing through Pegasus c) Inspect outputs in tool Ul
in the tool Ul

- Rappture Based Tools
Tools built using the Rappture GUI Builder
— Users configure the simulation, prepare inputs using Rappture tool Ul
— Tool execution results in workflows launched through Submit/Pegasus

— Jobs execute on DiaGrid and Open Science Grid, and outputs staged back to Hub
— Users visualize the outputs in the tool Ul

— Tools in NanoHub, DiaGrid, NEESHub

1 4= . ——{

-
Acknowledgements: Steven Clark and Derrick Kearney, Purdue University

Relevant Links

= Pegasus:
— Tutorial and documentation:

— Support:

= Rappture & Submit:

= Submit Command

= Pegasus Workflows on HubZero

— Tutorial

USC V1terb1 |

School of Eng

