
Scientific Workflows - How Pegasus

can enhance your DAGMan experience

Karan	
 Vahi	

	

Science	
 Automa1on	
 Technologies	
 Group	

USC	
 Informa1on	
 Sciences	
 Ins1tute	

2

chr21

fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq fast2bfq

fastqSplit fastqSplit fastqSplit fastqSplit fastqSplit fastqSplit

filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams filterContams

mapMerge

mapMerge mapMerge mapMerge mapMerge mapMerge mapMerge

map map map map map map map map map map map map

pileup

sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger sol2sanger

create_dir

Scientific Workflows

§  Orchestrate complex, multi-stage scientific computations

§  Often expressed as directed acyclic graphs (DAGs)

§  Capture analysis pipelines for sharing and reuse

§  Can execute in parallel on distributed resources

2

Setup

Split

Filter &

Convert

Map

Merge

Analyze
Epigenomics Workflow

3

Workflows can be simple

J3J1 J2 J4 J5 J9J8J6 J7 Jn

4

Some workflows are large-scale

and data-intensive

§  Montage Galactic Plane Workflow

–  18 million input images (~2.5 TB)

–  900 output images (2.5 GB each, 2.4 TB total)

–  10.5 million tasks (34,000 CPU hours)

§  Need to support hierarchical workflows and scale

John Good (Caltech)

5

HTCondor DAGMan

§  All the previous workflow pipeline are DAG based

§  DAGMan is a reliable and a scalable workflow executor

–  Sits on top of HTCondor Schedd

–  Can handle very large workflows (to order of million tasks)

§  Has useful reliability features in-built

–  Automatic Job retries

–  Rescue DAG’s (recover from where you left off in case of failures)

§  Throttling for jobs in a workflow

§  Easy way to describe workflows

–  Users can directly express their workflows as DAGMan Dags and

condor submit files.

6

However - !

§  If you code directly against DAGMan

–  You are potentially limiting yourself to a single execution resource

–  You are responsible for figuring out how to access the data

•  Where do the inputs for your pipeline exist and what file servers to use?

•  How do you ship in the small/large amounts data required by the

workflows?

•  Can I use SRM? How about GridFTP? HTTP and Squid proxies?

•  Can I use Cloud based storage like S3 on EC2?

–  How do you leverage underlying infrastructure setups

•  E.g. On a HPC cluster in XSEDE, you can rely on the shared filesystem to

store data, and use it for all jobs in the workflow

•  On OSG and in computational clouds each job needs to bring it’s own inputs

–  What happens if somebody wants setup your pipleine on their own

resource?

•  Can your pipeline on Amazon EC2 one day, and a PBS cluster the next?

7

Other Workflow Challenges

§  Provenance
–  Can you go back and find out how and where data was produced?

§  Debug and Monitor Workflows
–  Users need automated tools to go through the log files
–  Need to correlate data across lots of log files
–  Need to know what host a job ran on and how it was invoked

§  Restructure Workflows for Improved Performance
–  Short running tasks?
–  Data placement?  

§  Integrate with higher level tools such as HubZero and
provisioning infrastructure
–  such as GlideinWMS, BOSCO

8

Pegasus Workflow Management System

§  NSF funded project since 2001
–  Developed as a collaboration between USC Information Sciences Institute and

the Condor Team at UW Madison

§  Builds on top of HTCondor DAGMan.

§  Abstract Workflows - Pegasus input workflow description
–  Workflow “high-level language”

–  Only identifies the computation, devoid of resource descriptions, devoid of data
locations

–  File Aware – For each task you specify the input and output files

§  Pegasus is a workflow “compiler” (plan/map)
–  Target is DAGMan DAGs and Condor submit files

–  Transforms the workflow for performance and reliability

–  Automatically locates physical locations for both workflow
components and data

–  Collects runtime provenance

B B

D

A

B B

C C C C

9

Abstract to Executable Workflow Mapping

§  Abstraction provides

–  Ease of Use (do not need to

worry about low-level execution

details)

–  Portability (can use the same

workflow description to run on a
number of resources and/or

across them)

–  Gives opportunities for

optimization and fault tolerance

•  automatically restructure

the workflow

•  automatically provide fault

recovery (retry, choose

different resource)

Pegasus Guarantee -

Wherever and whenever a
job runs it’s inputs will be in

the directory where it is
launched.

General Workflow Execution Model

•  Input	
 Data	
 Site,	
 Compute	
 Site	
 and	
 Output	
 Data	
 Sites	
 can	
 be	
 co-­‐located	

–  Example:	
 Input	
 data	
 is	
 already	
 present	
 on	
 the	
 compute	
 site.	

•  Most	
 of	
 the	
 tasks	
 in	

scien1fic	
 workflow	

applica1ons	
 require	

POSIX	
 file	
 seman1cs	

–  Each	
 task	
 in	
 the	

workflow	
 opens	
 one	
 or	

more	
 input	
 files	

–  Read	
 or	
 write	
 a	
 por1on	

of	
 it	
 and	
 then	
 close	
 the	

file.	

11

Supported Data Staging Approaches - I

§  Worker nodes and the head node have
a shared filesystem, usually a parallel
filesystem with great I/O characteristics

§  Can leverage symlinking against
existing datasets

§  Staging site is the shared-fs.

Submit

Host

Compute Site

Shared

FS

WN

WN

HPC Cluster

Shared Filesystem setup (typical of XSEDE and HPC sites)

Non-shared filesystem setup with staging site (typical of OSG and EC 2)

§  Worker nodes don’t share a filesystem.

§  Data is pulled from / pushed to the
existing storage element.

§  A separate staging site such as S3.
Compute Site

Submit

Host
Staging

Site

WN

WN

Amazon

EC2 with S3

Jobs

Data

HubZero uses Pegasus to run a single application
worklow across sites, leveraging shared filesystem at

local PBS cluster and non shared filesystem setup at
OSG!

12

Supported Data Staging Approaches - II

§  Worker nodes don’t share a filesystem

§  Symlink against datasets available locally

§  Data is pulled from / pushed to the
submit host via Condor file transfers

§  Staging site is the submit host.

Using Pegasus allows you to move from one

deployment to another without changing the

workflow description!

Condor IO (Typical of large Condor Pools like CHTC)

Supported Transfer Protocols – for directory/file

creation and removal, file transfers
§  HTTP

§  SCP

§  GridFTP

§  IRODS

§  S3 / Google Cloud Storage

§  Condor File IO

§  File Copy

§  OSG Stash

Submit

Host

Local FS

Compute Site

WN WN
Jobs

Data

Pegasus Data Management Tools
pegasus-transfer, pegasus-create-dir, pegasus-

cleanup support client discovery, parallel transfers,
retries, and many other things to improve transfer

performance and reliability

13

Workflow Reduction (Data Reuse)

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.

Reuse it.

Mark Jobs D and B to delete
Delete Job D and Job B

Useful when you have done a part of computation and then realize the

need to change the structure. Re-plan instead of submitting rescue DAG!

14

File cleanup

§  Problem: Running out of disk space during workflow execution

§  Why does it occur

–  Workflows could bring in huge amounts of data

–  Data is generated during workflow execution

–  Users don’t worry about cleaning up after they are done

§  Solution

–  Do cleanup after workflows finish
•  Add a leaf Cleanup Job (Available in 4.4 Release onwards)

–  Interleave cleanup automatically during workflow execution.
•  Requires an analysis of the workflow to determine, when a file is no longer required

–  Cluster the cleanup jobs by level for large workflows

–  In 4.6 release, users should be able to specify maximum disk space that should

not be exceeded. Pegasus will restructure the workflow accordingly.

Real Life Example: Used by a UCLA genomics researcher to delete TB’s

of data automatically for long running workflows!!

15

File cleanup (cont)

Montage 1 degree workflow run with cleanup

16

Job Checkpoint Files

§  A job can specify that it uses one or more checkpoint files

§  Checkpoint files are both input files and output files
–  Recommended - application code should create checkpoint files periodically.

§  Users specify checkpoint.time (the time at which the job
creates a checkpoint file) and the maxwalltime of a site.

§  Pegasus will stage-out these files in the case that job fails
–  Typically due to a timeout on long-running jobs

–  They are sent a TERM signal at checkpoint.time associated with the jobs.

–  A KILL signal is sent K seconds after the TERM signal (where K is
(maxwalltime – checkpoint.time)/2

§  Pegasus will stage-in these files before retrying the job
–  They will appear in the working directory of the job

Works for Grid Universe not just vanilla!

Used by LIGO to run long running inspiral jobs on VIRGO compute
resources, where maxwalltime is 12 hours per site policy.

17

Workflow and Task Notifications

§  Users want to be notified at certain points in the workflow

or on certain events.

§  Support for adding notification to workflow and tasks

§  Event based callouts

–  On Start, On End, On Failure, On Success

–  Provided with email and jabber notification scripts

–  Can run any user provided scripts

–  Defined in the DAX

18

Workflow Restructuring to improve application performance

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – need to make this overhead

worthwhile

–  Ideally users should run a job on the grid that takes at least 10/30/60/?
minutes to execute

–  Clustered tasks can reuse common input data – less data transfers

Horizontal clustering

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

cluster_2cluster_1

B B

D

A

B B

C C C C

Label-based clustering

19

Workflow Monitoring - Stampede

§  Leverage Stampede Monitoring framework with DB backend
–  Populates data at runtime. A background daemon monitors the logs files and

populates information about the workflow to a database
–  Stores workflow structure, and runtime stats for each task.

§  Tools for querying the monitoring framework
–  pegasus-status

•  Status of the workflow

–  pegasus-statistics
•  Detailed statistics about your finished workflow

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002

Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2

--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)

Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

20

Workflow Debugging Through Pegasus

§  After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary
of the run

§  pegasus-analyzer's output contains
–  a brief summary section

•  showing how many jobs have succeeded

•  and how many have failed.

–  For each failed job

•  showing its last known state

•  exitcode

•  working directory

•  the location of its submit, output, and error files.

•  any stdout and stderr from the job.

Alleviates the need for searching through large DAGMan and Condor

logs!

21

Workflow Monitoring Dashboard: pegasus-dashboard

§  A python based online workflow dashboard
–  Uses the FLASK framework

–  Packaged with Pegasus 4.5 release.

–  Queries the STAMPEDE database

§  Lists all the user workflows on the home page and are color

coded.

–  Green indicates a successful workflow,

–  Red indicates a failed workflow

–  Blue indicates a running workflow

§  Explore Workflow and Troubleshoot (Workflow Page)

–  Has identifying metadata about the workflow

–  Tabbed interface to

•  List of sub workflows

•  Failed jobs

•  Running jobs

•  Successful jobs.

22

Workflow Statistics

Jobs and Runtime over Time

Workflow Gantt Chart
And Job Distribution

Workflow Listing Page
Shows Successful, Failed
and Running Workflows

 Pegasus
 Dashboard

Metrics Usage May 2014-May2015

DAGMan metrics reporting only in
4.5 onwards

24

Summary –
What Does Pegasus provide an Application - I

§  All the great features that DAGMan has

–  Scalability / hierarchal workflows

–  Retries in case of failure.

§  Portability / Reuse

–  User created workflows can easily be mapped to and run in
different environments without alteration.

§  Performance

–  The Pegasus mapper can reorder, group, and prioritize tasks in

order to increase the overall workflow performance.

25

Summary –
What Does Pegasus provide an Application - II

§  Provenance
–  Provenance data is collected in a database, and the data can be

summaries with tools such as pegasus-statistics, pegasus-plots, or
directly with SQL queries.

§  Reliability and Debugging Tools

–  Jobs and data transfers are automatically retried in case of failures.
Debugging tools such as pegasus-analyzer helps the user to debug
the workflow in case of non-recoverable failures.

§  Data Management

–  Pegasus handles replica selection, data transfers and output
registrations in data catalogs. These tasks are added to a workflow
as auxiliary jobs by the Pegasus planner.

26

Relevant Links

§  Pegasus: http://pegasus.isi.edu

§  Tutorial and documentation:

http://pegasus.isi.edu/wms/docs/latest/

§  Support: pegasus-users@isi.edu

 pegasus-support@isi.edu

Acknowledgements

Pegasus Team, Condor Team, funding agencies, NSF,

NIH, and everybody who uses Pegasus.

