
A Cleanup Algorithm for Implementing

Storage Constraints in Scientific

Workflow Executions

Gideon	
 Juve,	
 Rafael	
 Ferreira	
 da	
 Silva,	
 	

Karan	
 Vahi,	
 Ewa	
 Deelman	

Informa(on	
 Sciences	
 Ins(tute	

University	
 of	
 Southern	
 California	

{gideon,rafsilva,vahi,deelman}@isi.edu	
 	

	

Sudarshan	
 Srinivasan	

Department	
 of	
 Computer	
 Science	
 and	
 Engineering	

Indian	
 Ins(tute	
 of	
 Technology,	
 Hyderabad	

email2sudarshan@gmail.com	
 	

	

2

Problem

§  Data-intensive workflow

§  Disk space is limited (storage constraint)

–  Machines may not have enough disk space

–  Quotas may impose caps on disk usage

–  Want to reduce or limit use of resources

§  Need to remove data as workflow is running in order to

free enough space to finish the workflow

§  It may not be possible to execute the workflow

–  Identifying the minimum storage required is hard

–  But we can compute some bounds

3

Assumptions

§  Storage constraint is given

§  Workflow is modeled as a DAG

–  Nodes: Tasks

–  Edges: Data flow dependencies

§  Input/output files for each task are known

§  Size of each file is known

–  Or at least a reasonable estimate

4

Previous Solutions

§  Manual dependencies and cleanup tasks

–  Forces a certain ordering of tasks that results in smaller footprint

–  Cleanup removes data

§  Partitioning

–  Split up tasks across several sites based on available storage

–  Does not work for a single site

–  Does not work if total available storage < workflow size

–  Transfers may cause performance problems (can be minimized)

§  Cleanup task algorithms

–  Add tasks to the workflow that remove data when it is not needed

–  One task for each file – Generates lots of cleanup tasks

–  Clustering – Still may cleanup tasks (1 per task)

5

Problems with Previous Solutions

§  Typically require development of a data-aware scheduler

–  May not be feasible on some infrastructures

§  Online solutions can result in deadlock

–  Backtracking required to resolve the problem

–  Particularly problematic if no solution is possible

§  Cleanup approaches can hurt performance

–  Often result in too many cleanup tasks

–  Can increase workflow makespan

§  Many don’t provide any guarantees about disk usage

6

Goals

§  Provide some guarantee about storage used by workflow

–  No deadlocks (if solution found and estimates are accurate)

§  No modifications to scheduler

–  Only requires DAG engine

§  Minimize impact on performance

–  Few cleanup tasks

–  Reduce bottlenecks

7

Approach

§  Storage-Constrained Cleanup Algorithm

§  Adds cleanup tasks to the workflow at planning time

§  Cleanup tasks added only when and where they are

needed

§  Makes non-cleanup tasks depend on cleanup tasks in

order to ensure that space is available at each step of the

workflow

8

Storage-Constrained Cleanup Algorithm

1. Choose a ready task to schedule

2. If space is available: run the task

3. If enough space can be cleaned up to let the task run:

3.1 Create one or more cleanup tasks to remove all of the eligible files

3.2 Make queued jobs depend on cleanup tasks

3.3 Make cleanup tasks depend on tasks that use cleaned up files

3.4 Mark task as finished, queue additional tasks

4. If no more data can be cleaned up:

4.1 Report failure

5. If more ready tasks: goto 1

6. Add leaf cleanup task, return updated DAG

9

Example

§  Storage limit set to 200 units

§  Algorithm proceeds until there is

insufficient disk space to run the

next task

1

3

50 50 50

4 5 6

1010 10

2

7

8 9

20 20

10 10 10 10 1010

10

Task marked as executed

Subsequent task

Candidate task for execution

Cleanup task

Disk space of produced data
200 units are used

10

Example

§  Storage limit set to 200 units

§  Algorithm proceeds until there is

insufficient disk space to run the

next task

1

3

50 50 50

4 5 6

1010 10

2

7

8 9

20 20

10 10 10 10 1010

10

Task marked as executed

Subsequent task

Candidate task for execution

Cleanup task

Disk space of produced data
110 units can be removed

11

Example

§  Cleanup task removes all data

that is no longer required

§  Depends on tasks that used

the files that were removed

§  All queued tasks depend on

cleanup task

1

3

50
50

50

4

5 6

1010 10
2

7

8 9

20 20

10

10 10

10 10

10

10

Task marked as executed

Subsequent task

Candidate task for execution

Cleanup task

Disk space of produced data

5	
 6	

7	

8	
 9	

12

Example

§  A final cleanup task is

inserted to ensure that all

intermediate data is removed

1

3

50
50

50

4

5 6

1010 10
2

7

8 9

20 20

10

10 10

10 10

10

10

Task marked as executed

Subsequent task

Candidate task for execution

Cleanup task

Disk space of produced data

13

Heuristics for selecting a task (Step 1)

§  Max Freed
–  Select the task that maximizes the amount of data that can be

cleaned up

§  Min Required

–  Select the task that requires the least amount of storage space
(smallest output) – Make more progress before cleanup

§  Max Required

–  Select the task that requires the largest amount of storage space
(largest output) – Most difficult to accommodate

§  Balance Factor

–  Select task with largest “balance factor” – Difference between
space freed, and space required

14

Heuristics for creating cleanup tasks (Step 3.1)

§  Single Task
–  Create one cleanup task to remove all of the files

§  Queued Tasks

–  Create one cleanup task for each queued task

§  Random Tasks

–  Adds a random number between 1 and the number of queued
tasks

§  Resources Tasks

–  Adds cleanup tasks up to the number of resources

§  Note:

–  Not more than than the number of files being removed

15

Evaluation – Alternative algorithm

§  Compare proposed algorithm with algorithm by Singh, et al.

§  Singh’s algorithm is the default cleanup algorithm in Pegasus

1

3

50 50
50

4 5 6

1010 10

2

7

8 9

20 20

10 10 10 10 1010

DAG generated by Singh’s algorithm

16

Evaluation – Applications

 Montage CyberShake

§  Generated synthetic workflows based on real application

§  Most experiments used workflows with 1000 tasks

17

Evaluation – Simulator

§  Simulator based on CloudSim framework

§  Parameterized with values from a previous paper on

workflow overheads, and some experiments

§  Priority based scheduling with randomization

§  100 simulation runs for most data points

18

Experiment 1 – Ability to meet storage constraint

§  Cleanup tasks are

prioritized

§  Constraint set to 40% of

maximum storage

§  Montage results (CS is

similar)

§  New algorithm doesn’t

exceed constraint.

Existing algorithm is ok

on fewer resources.

●
● ●

●
●

●

●

●

●

0%

10%

20%

30%

40%

50%

1 2 4 8 16 32 64 128 256
Number of Resources

P
e
a
k
 S

to
ra

g
e
 u

s
e
d
 (

in
 %

 o
f
m

a
x
im

u
m

)

● Singh et al. Storage−Constrained

19

Experiment 2 – Number of cleanup tasks

●

●

●

●

2 2 2 2

31
51

101

1001

0

300

600

900

1200

30 50 100 1000
Number of Tasks

N
u

m
b

e
r

o
f

C
le

a
n
u

p
 T

a
s
k
s

●a aSingh et al. Storage−Constrained

Vary number of tasks in workflow

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1 2 2 2 2 2 2 2 2 2 3 3 3 4 6

1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001

0

300

600

900

1200

30%40%50%60%70%80%90%100%
Storage Constraint (% of total required MBs)

N
u
m

b
e
r

o
f
C

le
a
n
u
p
 T

a
s
k
s

●a aSingh et al. Storage−Constrained

Vary storage constraint

§  Compare the number of

cleanup tasks generated

by both algorithms

§  CyberShake results

(Montage is similar)

§  New algorithm generated

far fewer cleanup jobs

20

2500

5000

7500

4 8 16 32 64 128 256
Number of Resources

M
a
k
e
s
p
a
n
 (

s
e
c
)

No−Cleanup Singh et al. Storage−Constrained

Experiment 3 – Effect of cleanup on makespan

§  Vary the number of

resources

§  Storage constraint set

to 75% of total workflow

size

§  New algorithm is much

better for CyberShake,

mixed results for

Montage

CyberShake

1000

2000

3000

4000

4 8 16 32 64 128 256
Number of Resources

M
a
k
e
s
p
a
n
 (

s
e
c
)

No−Cleanup Singh et al. Storage−Constrained

Montage

21

Experiment 4 – Heuristics for task selection

§  CyberShake results

(Montage is similar)

§  Not much effect on peak

storage, but Max Freed is

as you would expect

§  For makespan, balance

factor is usually better

●

●

●●

●

●
●

●

●

●

●
●

●●

●

0%

25%

50%

75%

100%

100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 45% 40% 35% 30%
Storage Constraint (% of total required MBs)

P
e
a
k

S
to

ra
g
e
 u

se
d
 (

in
 %

 o
f
m

a
xi

m
u
m

)

●Balance FCFS Max Freed Max Required Min Required Random

2500

5000

7500

4 8 16 32 64 128 256
Number of Resources

M
a

k
e

s
p

a
n

 (
s
e

c
)

Balance Factor Max Freed Max Required Min Required

22

2500

5000

7500

4 8 16 32 64 128 256
Number of Resources

M
a
k
e
s
p
a
n
 (

s
e
c
)

Queued Tasks Random Tasks Resources Tasks Single Task

Experiment 5 – Heuristics for no. of cleanup tasks

§  30% storage constraint

§  CyberShake results

(Montage difference is

relatively insignificant)

§  Heuristic based on

number of resources is

best

23

Conclusion

§  Proposed a new algorithm for storage constrained

workflows that:

–  Does not require a data-aware scheduler

–  Provides more guarantees about storage space used

–  Generates far fewer cleanup jobs that existing approaches

–  Often results in smaller makespan than existing cleanup

approaches (depends on application)

§  Future work

–  What if size estimates are wrong?

–  Handling workflows executed on multiple sites

–  Enhancements to reduce dependencies and improve parallelism

