V&

-

Pegasus WMS — Automated Data
Management in Shared and
Nonshared Environments

Mats Rynge

<rynge@isi.edu>

USC Information Sciences Institute

USC \/ltefbl Information Sciences Institute

School of Eng

Pegasus Workflow Management System

= NSF funded project and developed since 2001 as a collaboration between USC Information
Sciences Institute and the HTCondor Team at UW Madison

= Builds on top of HTCondor DAGMan.

= Abstract Workflows - Pegasus input workflow description
— Workflow “high-level language”

— Only identifies the computation, devoid of resource descriptions, devoid of data
locations

= Pegasusis a workflow “compiler” (plan/map)
— Target is DAGMan DAGs and HTCondor submit files
— Transforms the workflow for performance and reliability

— Automatically locates physical locations for both workflow
components and data

— Collects runtime provenance

USC Yiterbi

f Engineering

Abstract Workflow

#!/usr/bin/env python <?xml version="1.0" encoding="UTF-8"7>
from PegaSUS.DAX3 import * <!__ generator: python —_—
;mpg:z ZZS <adag xmlns="http://pegasus.isi.edu/schema/DAX"
P version="3.4" name="hello_world">
Create a abstract dag § : :
dax = ADAG("hello_world") <!— describe the jobs making
_ up the hello world pipeline —>
Add the hello job <job id="ID@0AAOAA1" namespace="hello_world"
hello = Job(namespace="hello_world", name="hello" version="1.0">

name="hello", version="1.0")
b = File("f.b")

hello.uses(a, link=Link.INPUT) <uses name="f.b" link="output"/>
hello.uses(b, link=Link.OUTPUT) <uses name="f.a" link="input"/>
dax.addJob(hello) </job>

Add the world job (depends on the hello job) <job id="ID000A0A2" namespace="hello_world"
world = Job(namespace="hello_world", name="world" version="1.0">

name="world", version="1.0")
¢ = File{("f.c")

world.uses(b, link=Link.INPUT) <uses name="f.b" link="input"/>
world.uses(c, link=Link.OUTPUT) _ <uses name="f.c" link="output"/>
dax.addJob(world) </job>
Add control-flow dependencies <!— describe the edges in the DAG —>
dax.addDependency(Dependency(parent:hello, <child ref="1D0000002">

RS <parent ref="1D0000001"/>
Write the DAX to stdout </child>
dax.writeXML(sys.stdout) </adag>

USC __fiterbi

School of Engineering

Abstract to Executable Workflow Mapping

Abstract Workflow

USC Viterbi

Executable Workflow

LEGEND
. Unmapped Job

. Compute Job
mapped to a site

Stage-in Job
Stage-Out Job

Registration Job

Make Dir Job
Cleanup Job

= Abstraction provides

— Ease of Use (do not need
to worry about low-level
execution details)

— Portability (can use the
same workflow
description to runon a
number of resources
and/or across them)

— Gives opportunities for
optimization and fault
tolerance

e automatically
restructure the
workflow

e automatically provide
fault recovery (retry,
choose different
resource)

School of Engineering

Supported Data Staging Approaches

— Shared Filesystem setup (typical of XSEDE and HPC sites)

* Worker nodes and the head node have a shared filesystem, usually a
parallel filesystem with great 1/O characteristics

— Condor 10

* Worker nodes don’t share a filesystem

* Datais pulled from / pushed to the submit host via Condor file
transfers

— NonShared filesystem setup using an existing storage element
for staging (typical of OSG and campus Condor pools)

* Worker nodes don’t share a filesystem.
* Data is pulled from / pushed to the existing storage element.

USC V1terb1 |

School of Eng

Workflow Reduction (Data Reuse)

¢ 8

f.out f.out

File f.d exists somewhere.
Abstract Workflow Reuse it.

Mark Jobs D and B to delete Delete Job D and Job B

USC Viterbi

School of Eng

File cleanup (cont)

with cleanufr @ with cleanwr - ____. without cleanup

B

14010

1260 | r="----

1120 |

q50

S0
oo
SE0]
420]

space used in HE

250

140 |

5 44 B }

tire in minutbes

Executable Workflow

Montage 1 degree workflow run with cleanup

USC Viterbi

School of Engineering

=

Abstract
Workflo

Workflow —
Setup (
Job

Workflow
Stagein ‘

SUBMIT HOST

1

1

1

1

1
Executes On ¥
Submit Host

(COMPUTE ELEMENT - 1

Head
Node

Job

Executable
Workflow

Workflow
1

Stageout
Job

Data
Cleanup
Job

Condor Schedd
Queue

[

Head
Node

m

-

HTCondor
DAGMan

LEGEND
‘ Directory Setup JOb. Data Stageout Job

O Data Stagein Job . Directory Cleanup Job

Worker Node

w @

@ Pegasus Lite Compute Job

Pegasus Lit
@ Instance
w @ s N
" [/
" . ! ,,’ STAGING STORAGE
~ i ELEMENT
o d [
N o e Supports independent
N protocols for the get and
) GET put interfaces
N 3 ~| INTERFACE
\)< = G
f 1
N o
D ']
o 2 NI A A
COMPUTE ELEMENT- n 1 pa
PUT Protocols Supported:
_ | INTERFACE
WN Pegasus Lite — o SRM
Instance | GridFTP
: HTTP
| IRODS
\ S3
\ SCP
\

\
\

\
~

Executes On e
Submit Host

Y

Executes On
Submit Host sl
HTTP v

PUTE ELEMENT -1

Pegasus Lite
Instance

.Cache /
N f
WN. \\ "' 1'//—
2 N / ;
N]
bV e P
N N
\ GET
5\ _| INTERFACE
P
\></ HEE
oo
L Ty
B P \ ' i 5I
S o :
UTE ELEMENT- n 47 ® -
PUT

L | INTERFACE

/
/X
Peaasus Lite

| =

pegasus-transfer subsystem

Command line tool used internally by Pegasus workflows

Input is a list of source and destination URLs

Transfers the data by calling out to tools — provided by the
system (cp, wget, ...) Pegasus (pegasus-gridftp, pegasus-s3) or
third party (gsutil)

Transfers are parallelized

Transfers between non-compatible protocols are split up into
two transfers using the local filesystem as a staging point
— for example: GridFTP->GS becomes GridFTP->File and File->GS

USC Viterbi

School of Engineering

Supported

URLs

GridFTP
SRM
iIRods
S3

GS
SCP
HTTP
File
Symlink

Relevant Links

http://pegasus.isi.edu

Tutorial and documentation:

http://pegasus.isi.edu/wms/docs/latest/

Mats Rynge rynge@isi.edu

USC V1terb1 |

School of Eng

Catalogs

= Pegasus uses 3 catalogs to fill in the blanks of the abstract workflow

= Site catalog
— Defines the execution environment and potential data staging resources

— Simple in the case of Condor pool, but can be more complex when running on
grid resources

= Transformation catalog
— Defines executables used by the workflow
— Executables can be installed in different locations at different sites

= Replica catalog

— Locations of existing data products — input files and intermediate files from
previous runs

USCViterbi

ngineering

