Experiments with Complex Scientific Applications on Hybrid Cloud Infrastructures

Maciej Malawski1,2, Piotr Nowakowski1, Tomasz Gubała1, Marek Kasztelnik1, Marian Bubak1,2, Rafael Ferreira da Silva3, Ewa Deelman3, Jarek Nabrzyski4

NSFCloud Workshop on Experimental Support for Cloud Computing
December 11-12, 2014, Arlington, VA

AGH University of Science and Technology:
1 ACC Cyfronet AGH, ul. Nawojki 11, 30-950 Kraków, Poland
2 Department of Computer Science, al. Mickiewicza 30, 30-095 Kraków, Poland
3 University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA
4 Center for Research Computing, University of Notre Dame, IN, USA
Research Challenges

• Execution of complex scientific applications on clouds: workflows and their ensembles
 • Pegasus Workflow Management System (OCI SI2-SSI #1148515)
 • HyperFlow Workflow Engine

• Platform for deployment and sharing of scientific applications on hybrid clouds
 • Atmosphere Framework

• Algorithms for scheduling, provisioning and cost optimization:
 • Dynamic and Static Algorithms
 • Mathematical Programming
 • Cloud Workflow Simulator
Research: The Atmosphere Framework
Hybrid cloud as a means of provisioning computing power for virtual experiments

GUI host (provisions end-user features and access options)

Cloud Management Portlets
Provide GUI elements which enable service developers and end users to interact with the Atmosphere platform and create/deploy services on the available cloud resources

Secure RESTful API (Cloud Facade)

Atmosphere Core Services Host

Atmosphere Core
- Authentication and authorization logic
- Communication with underlying computational clouds
- Launching and monitoring service instances
- Creating new service templates
- Billing and accounting
- Logging and administrative services

Atmosphere Registry (AIR)
- User accounts
- Available cloud sites
- Services and templates

OpenStack cloud site at ACC CYFRONET AGH
- 96 CPU cores
- 184 GB RAM
- 4 TB storage
- Private IP space

VPH-Share cloud site at UNIVIE
- 128 CPU cores
- 256 GB RAM
- 4 TB storage
- Private IP space

Amazon Elastic Compute Cloud (EC2) – European availability zone
- Massive (functionally limitless) hardware resource pool
- Public IP space
Research: Simulation and Scheduling of Large-Scale Scientific Workflows on IaaS Clouds

• Large-scale scientific workflows from Pegasus WMS
 • Workflows of 100,000 tasks

• Workflow Ensembles
 • Schedule as many workflows as possible within a budget and deadline
 • Uses a Cloud Workflow Simulator

Research: Cost Optimization of Applications on Clouds

- Infrastructure model
 - Multiple compute and storage clouds
 - Heterogeneous instance types

- Application model
 - Bag of tasks
 - Multi-level workflows

- Modeling with AMPL and CMPL
 - Modeling Language for Mathematical Programming

- Cost optimization
 - Under deadline constraints

- Mixed integer programming
 - Bonmin, Cplex solvers

M. Malawski, K. Figiela, J. Nabrzyski, Cost minimization for computational applications on hybrid cloud infrastructures, Future Generation Computer Systems, 29(7), 2013, pp.1786-1794, http://dx.doi.org/10.1016/j.future.2013.01.004

M. Malawski, K. Figiela, M. Bubak, E. Deelman, J. Nabrzyski, Cost Optimization of Execution of Multi-level Deadline-Constrained Scientific Workflows on Clouds. PPAM, 2013, 251-260 http://dx.doi.org/10.1007/978-3-642-55224-3_24
Research: Cloud Performance Evaluation

- Performance of VM deployment times
 - Virtualization overhead
- Evaluation of open source cloud stacks
 - Eucalyptus, OpenNebula, OpenStack
- Survey of European public cloud providers
- Performance evaluation of top cloud providers
 - EC2, RackSpace, SoftLayer
 - A grant from Amazon has been obtained
Experiment: Evaluation of autoscaling techniques for Atmosphere cloud platform

• Challenges
 • Requires repeated tests under varying workloads
 • Experiments in an isolated environment

• Goals
 • Perform autoscaling based on:
 • Complex event processing
 • Time series database
 • Build an isolated environment on NSFCloud
Experiment: Scalability of Scientific Workflows in HyperFlow Model

• Challenges
 • Issues on data transfers and data locality
 • Calibrate the performance models of applications

• Goals
 • Execute large-scale deployments on multi-site NSFCloud facilities
 • Assess the impact of network latency and bandwidth limitations
Experiment: Influence of Variability of Clouds on the Quality of Algorithms

• Challenges
 • Static scheduling methods assume that the estimates of task runtimes are available
 • The runtime variations and various uncertainties influence the actual execution

• Goals
 • A large-scale experimental testbed will allow investigating the influence of the uncertainties
 • Development of new models to mitigate uncertainties negative effects
Experiment: Interoperation of Cloud Testbed of PL-Grid Infrastructure with NSFCloud

- **PL-Grid**
 - One of the largest national grid infrastructures in Europe (2500+ users, 500+ teams)
 - Cloud testbed based on OpenNebula and OpenStack

- **Goals**
 - Possibility to run transatlantic and global-scale experiments
 - Evaluation of impact of wide-area and high-latency networks
Experiments with Complex Scientific Applications on Hybrid Cloud Infrastructures

Thank you.

DICE Team at AGH: http://dice.cyfronet.pl
Center for Research Computing at Notre Dame: https://crc.nd.edu
Pegasus Team at USC: http://pegasus.isi.edu