
Managing Workloads with Pegasus

and DAGMan

Karan	
 Vahi	

	

Science	
 Automa1on	
 Technologies	
 Group	

USC	
 Informa1on	
 Sciences	
 Ins1tute	

2

Workloads – Simple Workflows.

J3J1 J2 J4 J5 J9J8J6 J7 Jn

3

Workloads or Workflows: Users have same concerns!

§  Data Management!
–  How do you ship in the small/large amounts data required by the workflows?"
–  Can I use SRM? How about GridFTP? HTTP and Squid proxies?"

–  Can I use Cloud based storage like S3 on EC2?"
!

§  Debug and Monitor Workflows!
–  Users need automated tools to go through the log files"
–  Need to correlate data across lots of log files"
–  Need to know what host a job ran on and how it was invoked"
!

§  Restructure Workflows for Improved Performance!
–  Short running tasks?"
–  Data placement?  

"

§  Integrate with higher level tools such as HubZero and
provisioning infrastructure!
–  such as GlideinWMS, BOSCO"

4

Pegasus Workflow Management System

§  NSF funded project since 2001
–  Developed as a collaboration between USC Information Sciences Institute and

the Condor Team at UW Madison

§  Builds on top of Condor DAGMan.

§  Abstract Workflows - Pegasus input workflow description
–  Workflow “high-level language”

–  Only identifies the computation, devoid of resource descriptions, devoid of data
locations

–  File Aware

§  Pegasus is a workflow “compiler” (plan/map)
–  Target is DAGMan DAGs and Condor submit files

–  Transforms the workflow for performance and reliability

–  Automatically locates physical locations for both workflow
components and data

–  Collects runtime provenance

B B

D

A

B B

C C C C

5

Pegasus WMS

API Interfaces

Portals

Other Workflow

Composition

Tools: Grayson,

Triana, Wings

Pegasus WMS

Mapper

Engine

Scheduler

Users

Distributed Resources
Campus Clusters, Local Clusters, Open Science Grid, XSEDE

GRAM

P

B

S

LSF SGE

C

O

N

D

O

R

STORAGECOMPUTEMIDDLEWARE

Cloudware
OpenStack

 Eucalyptus, Nimbus

GridFTP

HTTP

FTP

SRM

IRODS

Storage

SCP

Compute
 Amazon EC2, RackSpace,

FutureGrid

Workflow
DB

Monitoring

Logs

Notifications

S3

Clouds

6

Abstract to Executable Workflow Mapping

§  Abstraction provides

–  Ease of Use (do not need to

worry about low-level

execution details)

–  Portability (can use the same

workflow description to run on
a number of resources and/or

across them)

–  Gives opportunities for

optimization and fault

tolerance

•  automatically restructure

the workflow

•  automatically provide

fault recovery (retry,

choose different

resource)

7

Supported Data Staging Approaches

!

§  Condor IO (Typical of large Condor Pools like CHTC)!
–  Worker nodes don’t share a filesystem"
–  Symlink against datasets available locally"
–  Data is pulled from / pushed to the submit host via Condor file transfers 

"

§  NonShared filesystem setup using an existing storage element for
staging (typical of OSG and campus Condor pools) !

–  Worker nodes don’t share a filesystem."
–  Data is pulled from / pushed to the existing storage element."
–  (Pictured on the next slide)"

!

§  Shared Filesystem setup (typical of XSEDE and HPC sites)!
–  Worker nodes and the head node have a shared filesystem, usually a parallel

filesystem with great I/O characteristics"

–  Can leverage symlinking against existing datasets"

Three Main Configurations

Using Pegasus allows you to move from one deployment to another

without changing the workflow description!

WN

Head Node

WN W
W

Pegasus Lite
 Instance

WN

WN

OSG COMPUTE ELEMENT- n

Storage

STAGING STORAGE
ELEMENT

Supports independent

protocols for the get and put

interfaces

W

J

W

WJ

X

Y

WJ

X

Y

Abstract
Workflow

Condor

Queue

Directory Setup Job

Data Stagein Job

Data Stageout Job

Directory Cleanup Job

LEGEND

SI
Job

SO
Job

Executes On

Submit Host

Executes On

Submit Host

Workflow
Stagein

Job

Workflow
 Stageout

Job

WN

Head Node

WN J
J

Pegasus Lite
 Instance

WN

WN

OSG COMPUTE ELEMENT - 1

Storage

INPUT SITE n
SRM

GridFTP

irods

S3

Storage

INPUT SITE 1
SRM

GridFTP

irods

S3

Storage

OUTPUT SITE
SRM

GridFTP

irods

S3

SI
Job

Data Flow for Pegasus Workflows on OSG with
GlideinWMS and Staging Storage Element

Pegasus Planner

SUBMIT HOST

Executable
Workflow

Workflow
Setup
Job

Data
Cleanup

Job

Condor DAGMan

1

2

1'

4

2'

4'

5

HTTP
Squid
Cache

GET

INTERFACE

PUT

INTERFACE
Protocols Supported:

SRM

GridFTP

HTTP

IRODS

S3

SCP

3'

3

9

Workflow Reduction (Data Reuse)

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.

Reuse it.

Mark Jobs D and B to delete
Delete Job D and Job B

Useful when you have done a part of computation and then realize the

need to change the structure. Re-plan instead of submitting rescue DAG!

10

File cleanup

§  Problem: Running out of disk space during workflow execution

§  Why does it occur
–  Workflows could bring in huge amounts of data
–  Data is generated during workflow execution
–  Users don’t worry about cleaning up after they are done

§  Solution
–  Do cleanup after workflows finish

•  Does not work as the scratch may get filled much before during
execution

–  Interleave cleanup automatically during workflow execution.

•  Requires an analysis of the workflow to determine, when a file is no
longer required

–  Cluster the cleanup jobs by level for large workflows

Real Life Example: Used by a UCLA genomics researcher to delete TB’s

of data automatically for long running workflows!!

11

File cleanup (cont)

Montage 1 degree workflow run with cleanup

12

Workflow Restructuring to improve application performance

§  Cluster small running jobs together to achieve better
performance

§  Why?
–  Each job has scheduling overhead – need to make this overhead

worthwhile

–  Ideally users should run a job on the grid that takes at least 10/30/60/?
minutes to execute

–  Clustered tasks can reuse common input data – less data transfers

Level-based clustering
B

C

B

C

B

C

B

C

A

D

B

C

B

C

B

C

B

C

A

D

13

Workflow Monitoring - Stampede

§  Leverage Stampede Monitoring framework with DB backend!
–  Populates data at runtime. A background daemon monitors the logs files and

populates information about the workflow to a database"
–  Stores workflow structure, and runtime stats for each task."

!

§  Tools for querying the monitoring framework!
–  pegasus-status!

•  Status of the workflow"

–  pegasus-statistics!
•  Detailed statistics about your finished workflow"

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 135002 0 0 135002 0 135002

Jobs 4529 0 0 4529 0 4529
Sub-Workflows 2 0 0 2 0 2

--

Workflow wall time : 13 hrs, 2 mins, (46973 secs)

Workflow cumulative job wall time : 384 days, 5 hrs, (33195705 secs)
Cumulative job walltime as seen from submit side : 384 days, 18 hrs, (33243709 secs)

14

Workflow Debugging Through Pegasus

§  After a workflow has completed, we can run pegasus-
analyzer to analyze the workflow and provide a summary
of the run

§  pegasus-analyzer's output contains
–  a brief summary section

•  showing how many jobs have succeeded

•  and how many have failed.

–  For each failed job

•  showing its last known state

•  exitcode

•  working directory

•  the location of its submit, output, and error files.

•  any stdout and stderr from the job.

Alleviates the need for searching through large DAGMan and Condor

logs!

15

Workflow Monitoring Dashboard: pegasus-dashboard

§  A python based online workflow dashboard
–  Uses the FLASK framework

–  Beta version released in 4.2

–  Queries the STAMPEDE database

§  Lists all the user workflows on the home page and are color

coded.

–  Green indicates a successful workflow,

–  Red indicates a failed workflow

–  Blue indicates a running workflow

§  Explore Workflow and Troubleshoot (Workflow Page)

–  Has identifying metadata about the workflow

–  Tabbed interface to

•  List of sub workflows

•  Failed jobs

•  Running jobs

•  Successful jobs.

16

Workflow Monitoring Dashboard: pegasus-dashboard

§  Job Page

–  Lists information captured in kickstart record for the job.

–  Will show the various retries of the job

§  Statistics Page for the Workflow

–  Generates Statistics for the workflow, similar to pegasus-statistics

command line tool

§  Charts Page For the Workflow

–  Workflow Gantt Chart

–  Job Distribution by Count/Time

–  Time Chart by Job/Invocation

17

Workflow Monitoring Dashboard – pegasus-dashboard

Hosts Over Time – Distribution
of Different Job Types on Hosts

Jobs and Runtime over Time

Workflow Gantt Chart

18

Workflow and Task Notifications

§  Users want to be notified at certain points in the workflow

or on certain events.

§  Support for adding notification to workflow and tasks

§  Event based callouts

–  On Start, On End, On Failure, On Success

–  Provided with email and jabber notification scripts

–  Can run any user provided scripts

–  Defined in the DAX

19

Metrics Collection

§  Why?
–  A requirement of being funded as part of the NSF SI2 Program

–  Reporting ON by default. Can be turned off.

§  What do we collect?
–  Anonymous planner metrics

•  Duration of the planner

•  Start and end time

•  Exitcode

•  Breakdown of tasks and jobs in the workflow

–  We leave a copy of the metrics file in the submit directory for the users

§  Capturing Errors
–  In addition to capturing usage data, the planner also reports back fatal

errors

–  Using it to drive usability improvements for Pegasus

§  http://pegasus.isi.edu/wms/docs/latest/funding_citing_usage.php#usage_statistics

21

Summary –
What Does Pegasus provide an Application - I

§  All the great features that DAGMan has

–  Scalability / hierarchal workflows

–  Retries in case of failure.

§  Portability / Reuse

–  User created workflows can easily be mapped to and run in
different environments without alteration.

§  Performance

–  The Pegasus mapper can reorder, group, and prioritize tasks in

order to increase the overall workflow performance.

22

Summary –
What Does Pegasus provide an Application - II

§  Provenance
–  Provenance data is collected in a database, and the data can be

summaries with tools such as pegasus-statistics, pegasus-plots, or
directly with SQL queries.

§  Reliability and Debugging Tools

–  Jobs and data transfers are automatically retried in case of failures.
Debugging tools such as pegasus-analyzer helps the user to debug
the workflow in case of non-recoverable failures.

§  Data Management

–  Pegasus handles replica selection, data transfers and output
registrations in data catalogs. These tasks are added to a workflow
as auxiliary jobs by the Pegasus planner.

23

Relevant Links

§  Pegasus: http://pegasus.isi.edu

§  Tutorial and documentation:

http://pegasus.isi.edu/wms/docs/latest/

§  Support: pegasus-users@isi.edu

 pegasus-support@isi.edu

Acknowledgements

Pegasus Team, Condor Team, funding agencies, NSF,

NIH, and everybody who uses Pegasus.

