

Managing large-scale workflows with Pegasus

Karan Vahi (vahi@isi.edu)

Collaborative Computing Group USC Information Sciences Institute

Pegasus Workflow Management System

- Takes in a workflow description and can map and execute it on wide variety of environments
 - ♦ Local desktop
 - ♦ Local Condor Pool
 - ♦ Local Campus Cluster
 - **♦**Grid
 - ♦ Commercial or Academic Clouds

Pegasus Workflow Management System

- NSF funded Project and developed since 2001
- A collaboration between USC and the Condor Team at UW Madison (includes DAGMan)
- Used by a number of applications in a variety of domains
- Builds on top of Condor DAGMan.
 - ♦ Provides reliability—can retry computations from the point of failure
 - ♦ Provides scalability—can handle many computations (1- 10⁶ tasks)
- Automatically captures provenance information
- Can handle large amounts of data (order of Terabytes)
- Provides workflow monitoring and debugging tools to allow users to debug large workflows

Users

Pegasus WMS

- - agent of innovation - - -

Abstract Workflow (DAX)

- - agent of innovation - -

- Pegasus Input Workflow description—DAX

 - ♦ refers to codes as logical transformations
 - ♦ refers to data as logical files
- You can use Java, Perl, Python APIs to generate DAXes

Comparison of DAX and Condor DAG

Abstract Workflow

Abstraction provides

- Ease of Use (do not need to worry about low-level execution details)
- Portability (can use the same workflow description to run on a number of resources and/or across them)
- Gives opportunities for optimization and fault tolerance
 - automatically restructure the workflow
 - automatically provide fault recovery (retry,choose different resource)

Issues for Large Scale Workflows

Debug and Monitor Workflows

- ♦ Users need automated tools to go through the log files
- ♦ Need to Correlate Data across lots of log files
- ♦ Need to know what host a job ran on and how it was invoked?

Data Management

How do you ship in the large amounts data required by the workflows?

Restructure Workflows for Improved Performance

- ♦ Can have lots of short running jobs
- ♦ Leverage MPI

Workflow Monitoring - Stampede

- Leverage Stampede Monitoring framework with DB backend
 - ♦ Separates DB loading infrastructure and log representation
 - ♦ Populates data at runtime. A background daemon monitors the logs files and populates information about the workflow to a database
 - ♦ Supports SQLite or MySQL
 - ♦ Python API to query the framework
 - ♦ Stores workflow structure, and runtime stats for each task.
- ❖ Tools for querying the Monitoring framework
 - - Status of the workflow
 - - Detailed statistics about your workflow
 - ♦ pegasus-plots
 - · Visualization of your workflow execution

runtime

Workflow Monitoring - Stampede

Workflow Gantt Chart

Workflow Debugging Through Pegasus

- ❖ After a workflow has completed, we can run pegasusanalyzer to analyze the workflow and provide a summary of the run
- pegasus-analyzer's output contains
 - ♦ a brief summary section
 - showing how many jobs have succeeded
 - and how many have failed.
 - → For each failed job
 - showing its last known state
 - exitcode
 - working directory
 - the location of its submit, output, and error files.
 - any stdout and stderr from the job.

Workflow and Task Notifications

Users want to be notified at certain points in the workflow or on certain events.

- Support for adding Notification to Workflow and Tasks
 - ♦ Event based callouts
 - On Start, On End, On Failure, On Success
 - ♦ Provided with email and jabber notification scripts
 - ♦ Can run any user provided script as notification.
 - ♦ Defined in the DAX.

Supported Data Staging Configurations

Three General Configurations Supported

- ♦ Shared Filesystem setup (Typical of Xsede sites)
 - Worker nodes and the Head Node have a shared filesystem.
 - Can leverage symlinking against existing datasets
- NonShared Filesystem setup with a staging site (Typical of OSG or Campus Condor Pools)
 - Worker Nodes don't share a filesystem.
 - Data is pulled from an external staging site.

♦ Condor IO

- Worker Nodes don't share a filesystem
- Data is pulled from the submit host.

Data Flow For Pegasus Workflows

- - agent of innovation - - -

- - agent of innovation - - -

- - agent of innovation - -

WF Reduction (Data Reuse)

Reuse it. Mark Jobs D and B to delete

Delete Job D and Job B

File cleanup

- Problem: Running out of space on shared scratch
 - ♦ In OSG scratch space is limited to 30Gb for all users
- Why does it occur
 - ♦ Workflows bring in huge amounts of data
 - ♦ Data is generated during workflow execution
 - ♦ Users don't worry about cleaning up after they are done

Solution

- ♦ Do cleanup after workflows finish
 - Does not work as the scratch may get filled much before during execution
- ♦ Interleave cleanup automatically during workflow execution.
 - Requires an analysis of the workflow to determine, when a file is no longer required

Storage Improvement for Montage Workflows

- - - agent of innovation - - -

Montage 1 degree workflow run with cleanup on OSG-PSU

Workflow Restructuring to improve Application Performance

Cluster small running jobs together to achieve better performance

❖ Why?

- ♦ Each job has scheduling overhead
- ♦ Need to make this overhead worthwhile
- ♦ Ideally users should run a job on the grid that takes at least 10 minutes to execute

Previous solution: Glideins

- Pegasus clusters the jobs in a workflow and runs these jobs on a dynamic Condor pool
 - Pool is grown by submitting condor_startd daemons to remote cluster
- Works great on "regular" clusters
 - ♦ XSEDE: Ranger, ...
 - ♦ OSG
- ❖ Not so great on some newer Cray/IBM/... architectures
 - ♦ Problem 1: no/limited networking on compute nodes
 - ♦ Problem 2: queuing system optimized for large jobs

pegasus-mpi-cluster

- Planner creates subgraph based on user assigned labels
- Subgraph is expressed as DAG (simplified Condor DAGMan format)
- Submitted to remote resource (usually GRAM and CondorG)
- Executed with MPI master/ worker DAG engine

Large Workflows on Xsede using PMC

- - agent of innovation - - -

Summary –

What Does Pegasus provide an Application - I

All the great features that DAGMan has!

- ♦ Scalability Hierarchal Workflows. Pegasus runs workflows ranging from few computational tasks upto 1 million
- ♦ Retries in case of failure.

Portability / Reuse

Performance

♦ The Pegasus mapper can reorder, group, and prioritize tasks in order to increase the overall workflow performance.

Summary –

What Does Pegasus provide an Application - II

Provenance

provenance data is collected in a database, and the data can be summaries with tools such as pegasus-statistics, pegasusplots, or directly with SQL queries.

Data Management

♦ Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to a workflow as auxilliary jobs by the Pegasus planner.

Reliability and Debugging Tools

♦ Jobs and data transfers are automatically retried in case of failures. Debugging tools such as pegasus-analyzer helps the user to debug the workflow in case of non-recoverable failures.

Error Recovery

♦ Reuse existing output products to prune the workflow and move computation to another site.

- agent of innovation - -

Some Applications using Pegasus

- - agent of innovation - -

Astronomy

♦ Montage , Galactic Plane, Periodograms

Bio Informatics

♦ Brain Span, RNA Seq, SIPHT, Epigenomics, Seqware

Earthquake Science

Cybershake, Broadband from Southern California Earthquake
 Center

Physics

♦ LIGO

Relevant Links

- Pegasus WMS: http://pegasus.isi.edu/wms
- Tutorial and VM: http://pegasus.isi.edu/tutorial/
- ❖ Ask not what you can do for Pegasus, but what Pegasus can do for you : pegasus@isi.edu

Acknowledgements

❖ Pegasus Team, Condor Team, all the Scientists that use Pegasus, Funding Agencies NSF, NIH..