Managing large-scale workflows with Pegasus

Karan Vahi (vahi@isi.edu)

Collaborative Computing Group
USC Information Sciences Institute

Funded by the National Science Foundation under the OCI SDCI program, grant #0722019
Pegasus
Workflow Management System

- Takes in a workflow description and can map and execute it on wide variety of environments
 - Local desktop
 - Local Condor Pool
 - Local Campus Cluster
 - Grid
 - Commercial or Academic Clouds
Pegasus
Workflow Management System

- NSF funded Project and developed since 2001
- A collaboration between USC and the Condor Team at UW Madison (includes DAGMan)
- Used by a number of applications in a variety of domains
- Builds on top of Condor DAGMan.
 - Provides reliability—can retry computations from the point of failure
 - Provides scalability—can handle many computations (1-10^6 tasks)
- Automatically captures provenance information
- Can handle large amounts of data (order of Terabytes)
- Provides workflow monitoring and debugging tools to allow users to debug large workflows
Abstract Workflow (DAX)

- Pegasus Input Workflow description—DAX
 - workflow “high-level language”
 - devoid of resource descriptions
 - devoid of data locations
 - refers to codes as logical transformations
 - refers to data as logical files

- You can use Java, Perl, Python APIs to generate DAXes
Comparison of DAX and Condor DAG

- Abstraction provides
 - **Ease of Use** (do not need to worry about low-level execution details)
 - **Portability** (can use the same workflow description to run on a number of resources and/or across them)
 - **Gives opportunities for optimization** and fault tolerance
 - automatically restructure the workflow
 - automatically provide fault recovery (retry, choose different resource)
Issues for Large Scale Workflows

❖ Debug and Monitor Workflows
 ✿ Users need automated tools to go through the log files
 ✿ Need to Correlate Data across lots of log files
 ✿ Need to know what host a job ran on and how it was invoked?

❖ Data Management
 ✿ How do you ship in the large amounts data required by the workflows?

❖ Restructure Workflows for Improved Performance
 ✿ Can have lots of short running jobs
 ✿ Leverage MPI
Workflow Monitoring - Stampede

- Leverage Stampede Monitoring framework with DB backend
 - Separates DB loading infrastructure and log representation
 - Populates data at runtime. A background daemon monitors the logs files and populates information about the workflow to a database
 - Supports SQLite or MySQL
 - Python API to query the framework
 - Stores workflow structure, and runtime stats for each task.

- Tools for querying the Monitoring framework
 - `pegasus-status`
 - Status of the workflow
 - `pegasus-statistics`
 - Detailed statistics about your workflow
 - `pegasus-plots`
 - Visualization of your workflow execution

Funded by the National Science Foundation under the OCI SDCI program, grant OCI-0943705
Workflow Monitoring - Stampede

Hosts Over Time – Distribution of Different Job Types on Hosts

Workflow Gantt Chart

Jobs and Runtime over Time

Invocation breakdown by count grouped by transformation name

https://pegasus.isi.edu
name: 56c lowmass_hope
Total count: 284
Succeeded count: 384
Failed count: 0
Min Runtime: 0.625
Max Runtime: 2.026
Avg Runtime: 0.23074213875
Total Runtime: 88.805

Breakdown by
- count
- runtime
Workflow Debugging Through Pegasus

- After a workflow has completed, we can run `pegasus-analyzer` to analyze the workflow and provide a summary of the run.

- `pegasus-analyzer's output contains`
 - A brief summary section
 - Showing how many jobs have succeeded
 - And how many have failed.
 - For each failed job
 - Showing its last known state
 - Exitcode
 - Working directory
 - The location of its submit, output, and error files.
 - Any stdout and stderr from the job.
Workflow and Task Notifications

❖ Users want to be notified at certain points in the workflow or on certain events.

❖ Support for adding Notification to Workflow and Tasks
 ➕ Event based callouts
 • On Start, On End, On Failure, On Success
 ➕ Provided with email and jabber notification scripts
 ➕ Can run any user provided script as notification.
 ➕ Defined in the DAX.
Three General Configurations Supported

- **Shared Filesystem setup (Typical of Xsede sites)**
 - Worker nodes and the Head Node have a shared filesystem.
 - Can leverage symlinking against existing datasets.

- **NonShared Filesystem setup with a staging site (Typical of OSG or Campus Condor Pools)**
 - Worker Nodes don’t share a filesystem.
 - Data is pulled from an external staging site.

- **Condor IO**
 - Worker Nodes don’t share a filesystem.
 - Data is pulled from the submit host.
Data Flow For Pegasus Workflows

Legend:
- Orange: Directory Setup Job
- Green: Data Stageout Job
- Blue: Data Cleanup Job
- Red: Directory Cleanup Job
Tip: Set pegasus.data.configuration = sharedfs
WF Reduction (Data Reuse)

Abstract Workflow

File f.d exists somewhere. Reuse it. Mark Jobs D and B to delete

Delete Job D and Job B

Users can use this to move their computations to a different cluster in case of failure
Problem: Running out of space on shared scratch
- In OSG scratch space is limited to 30Gb for all users

Why does it occur
- Workflows bring in huge amounts of data
- Data is generated during workflow execution
- Users don’t worry about cleaning up after they are done

Solution
- Do cleanup after workflows finish
 - Does not work as the scratch may get filled much before during execution
- Interleave cleanup automatically during workflow execution.
 - Requires an analysis of the workflow to determine, when a file is no longer required
Storage Improvement for Montage Workflows

Montage 1 degree workflow run with cleanup on OSG-PSU
Workflow Restructuring to improve Application Performance

- Cluster small running jobs together to achieve better performance

- Why?
 - Each job has scheduling overhead
 - Need to make this overhead worthwhile
 - Ideally users should run a job on the grid that takes at least 10 minutes to execute
Job Clustering

- Level-based clustering
- Vertical clustering
- Arbitrary clustering

Useful for small granularity jobs
Previous solution: Glideins

- Pegasus clusters the jobs in a workflow and runs these jobs on a dynamic Condor pool
 - Pool is grown by submitting condor_startd daemons to remote cluster

- Works great on “regular” clusters
 - XSEDE: Ranger, …
 - OSG

- Not so great on some newer Cray/IBM/… architectures
 - Problem 1: no/limited networking on compute nodes
 - Problem 2: queuing system optimized for large jobs
pegasus-mpi-cluster

- Planner creates subgraph based on user assigned labels
- Subgraph is expressed as DAG (simplified Condor DAGMan format)
- Submitted to remote resource (usually GRAM and CondorG)
- Executed with MPI master/worker DAG engine
Large Workflows on Xsede using PMC

Executable Workflow

Pegasus Mapper

Condor Queue
On Submit Host

Single MPI Job

Single MPI Job

XSEDE Site 1

XSEDE Site 2
Summary –
What Does Pegasus provide an Application - I

❖ All the great features that DAGMan has!
 ✷ Scalability - Hierarchal Workflows. Pegasus runs workflows ranging from few computational tasks upto 1 million
 ✷ Retries in case of failure.

❖ Portability / Reuse
 ✷ User created workflows can easily be run in different environments without alteration.

❖ Performance
 ✷ The Pegasus mapper can reorder, group, and prioritize tasks in order to increase the overall workflow performance.
Summary –
What Does Pegasus provide an Application - II

❖ Provenance
 ❖ Provenance data is collected in a database, and the data can be summaries with tools such as `pegasus-statistics`, `pegasus-plots`, or directly with SQL queries.

❖ Data Management
 ❖ Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to a workflow as auxiliary jobs by the Pegasus planner.

❖ Reliability and Debugging Tools
 ❖ Jobs and data transfers are automatically retried in case of failures. Debugging tools such as `pegasus-analyzer` helps the user to debug the workflow in case of non-recoverable failures.

❖ Error Recovery
 ❖ Reuse existing output products to prune the workflow and move computation to another site.
Some Applications using Pegasus

❖ Astronomy
 ✦ Montage, Galactic Plane, Periodograms

❖ Bio Informatics
 ✦ Brain Span, RNA Seq, SIPHT, Epigenomics, Seqware

❖ Earthquake Science
 ✦ Cybershake, Broadband from Southern California Earthquake Center

❖ Physics
 ✦ LIGO

Complete Listing: http://pegasus.isi.edu/applications
Relevant Links

- Pegasus WMS: http://pegasus.isi.edu/wms
- Tutorial and VM: http://pegasus.isi.edu/tutorial/
- Ask not what you can do for Pegasus, but what Pegasus can do for you: pegasus@isi.edu

Acknowledgements

- Pegasus Team, Condor Team, all the Scientists that use Pegasus, Funding Agencies NSF, NIH..