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The Problem 

•  Scientific data is being collected at an ever 
increasing rate 

•  The “old days”  -- big, focused experiments– LHC 

•  Today “cheap” DNA sequencers – and an increasing 
number of them 

•  The complexity of the computational problems 
is ever increasing 

•  Local compute resources are often not enough 
(too small, limited availability) 

•  The computing infrastructure keeps changing 

•  Hardware, software, but also computational models 

 



Computational workflows 

--managing application complexity 

Help express multi-step computations in 
a declarative way  

Can support automation, minimize 
human involvement 
Makes analyses easier to run 

Can be high-level and portable across 
execution platforms 

Keep track of provenance to support 
reproducibility  

Foster collaboration—code and data 
sharing 

 



So far applications have been 

running on local/campus 

clusters or grids 

SCEC CyberShake 

l  Uses physics-
based approach 
l  3-D ground 

motion simulation 
with anelastic 
wave propagation 

l  Considers 
~415,000 
earthquakes per 
site 

l  <200 km from 
site of interest 

l  Magnitude >6.5 
~ 850,000 tasks 



Data collected at a sequencers 

Needs to be filtered for noisy data 

Needs to be aligned 

Needs to be collected into a single map 

Vendors provide some basic tools 

you may want to try the latest alignment 
algorithm 

you may want to use a remote cluster 

Challenges: 

automation of analysis, reproducibility 

Portability 

provenance                USERS! 

DNA sequencing, a new breed 

of data-intensive applications 
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New applications are looking 

towards Clouds 

Originated in the business domain  

Outsourcing services to the Cloud (successful for 
business) 

Pay for what you use, elasticity of resources 

Provided by data centers that are built on compute 
and storage virtualization technologies  

Scientific applications often have different 
requirements 
MPI 

Shared file system 

Support for many dependent jobs 

Google’s Container-based Data Center in Belgium 
http://www.datacenterknowledge.com/  



Hosted Science 

•  Today applications are using the cloud as a 
resource provider (storage, computing, social 
networking) 

•  In the future more services will be migrating to 
the cloud (more integration) 

•  Hosted end-to-end analysis 

•  Data and method publication 

•  Instruments 

 

Infrastructure as a Service 

Workflow as 
Service 

Databases Clusters 

Analysis as 
Service 

Science as 
Service 

Instruments 

Data and Publication 
sharing  

Social Networking Manpower Application 
Models 

Email 



The Future is Now 

Illumnia’s BaseSpace 
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Issues  

•  It is difficult to manage cost  

•  How much would it cost to analyze one sample? 

•  How much would it cost to analyze a set of samples? 

•  The analyses may be complex and multi-step 
(workflows) 

•  It is difficult to manage deadlines 

•  “I would like all the results to be done in a week” 

•  “I would like the most important analyses done in a 
week” 

•  “I have a week to get the most important results and 
$500 to do it” 

 



Scientific Environment 
How to manage complex workloads?  

Data 
Storage  

Campus Cluster 
 
EGI 
 
TeraGrid/XSEDE 
 
 
Open Science Grid 
 
 
Amazon Cloud 
 
 

Work definition  

Local Resource 



Workflows have different computational needs 
--need systems to manage their execution 

MPI codes ~ 12,000 CPU hours,   
Post Processing 2,000 CPU hours 

Data footprint ~ 800GB 

SoCal Map 

needs 239 of 

those  

Peak # of cores on OSG 1,600 

Walltime on OSG 20 hours, could be done in 4 hours on 800 cores 



Workflow Management 

You may want to use different resources within a 
workflow or over time 

•  Need a high-level workflow specification 

•  Need a planning capability to map from high-level to 
executable workflow 

•  Need to manage the task dependencies 

•  Need to manage the execution of tasks on the 
remote resources 

•  Need to provide scalability, performance, 
reliability 



Our Approach 

l  Analysis Representation 
l  Support a declarative representation for the workflow (dataflow) 

l  Represent the workflow structure as a Directed Acyclic Graph 
(DAG) 

l  Use recursion to achieve scalability 

l  System (Plan for the resources, Execute the 
Plan, Manage tasks) 
l  Layered architecture, each layer is responsible for a particular 

function 

l  Mask errors at different levels of the system 

l  Modular, composed of well-defined components, where different 
components can be swapped in 

l  Use and adapt existing graph and other relevant algorithms 



Use the given Resources 

Data 
Storage  

Work definition 
As a WORKFLOW  

Workflow 
Management 
System 

Local Resource 

work 

data  

Campus Cluster 
 
EGI 
 
TeraGrid/XSEDE 
 
 
Open Science Grid 
 
 
Amazon Cloud 
 
 



Challenges of running workflows 

on the cloud 

Clouds provide resources, but the software is up to 
the user 

Running on multiple nodes may require cluster 
services (e.g. scheduler) 

Dynamically configuring such systems is not easy 
Manual setup is error-prone and not scalable 

Scripts work to a point, but break down for complex deployments 

Some tools are available 

Workflows need to communicate data—often 
through files, need filesystems 

Data is an important aspect of running on the cloud 
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Workflow Data In the Cloud 

Executables 

Transfer into cloud 

Store in VM image 

Input Data 

Transfer into cloud 

Store in cloud 

Intermediate Data 

Use local disk (single node only) 

Use distributed storage system 

Output Data 

Transfer out of cloud 

Store in cloud 



Amazon Web Services (AWS) 

IaaS Cloud, Services 
Elastic Compute Cloud (EC2) 

Provision virtual machine instances 

Simple Storage Service (S3) 

Object-based storage system 

Put/Get files from a global repository 

Elastic Block Store (EBS) 

Block-based storage system 

Unshared, SAN-like volumes 

Others (queue, RDBMS, MapReduce, Mechanical Turk 
etc.) 

We want to explore data management issues for 

workflows on Amazon 



Applications 
l  Not CyberShake SoCal map (PP) could cost at least 

$60K for computing and $29K for data storage (for a 
month) on Amazon (one workflow ~$300) 

l  Montage (astronomy, provided by IPAC) 

l  10,429 tasks, 4.2GB input, 7.9GB of output 

l  I/O: High (95% of time waiting on I/O) 

l  Memory: Low, CPU: Low 

l  Epigenome (bioinformatics, USC Genomics Center) 

l  81 tasks 1.8GB input, 300 MB output 

l  I/O: Low, Memory: Medium 

l  CPU: High (99% time of time) 

l  Broadband (earthquake science, SCEC) 

l  320 tasks, 6GB of input, 160 MB output 

l  I/O: Medium 

l  Memory: High (75% of task time requires > 1GB mem)  

l  CPU: Medium 



Storage Systems 

Local Disk 

RAID0 across available partitions with XFS 

NFS: Network file system 

1 dedicated node (m1.xlarge) 

PVFS: Parallel, striped cluster file system 

Workers host PVFS and run tasks 

GlusterFS: Distributed file system 

Workers host GlusterFS and run tasks 

NUFA, and Distribute modes 

Amazon S3: Object-based storage system 

Non-POSIX interface required changes to Pegasus 

Data is cached on workers 

 



A cloud Condor/NFS 

configuration  

The submit host can be in or out of the cloud 



Storage System Performance 

NFS uses an extra node 

PVFS, GlusterFS use workers to store data, S3 does not 

PVFS, GlusterFS use 2 or more nodes 

We implemented whole file caching for S3 



Lots of small files 

Re-reading the same file 



Cost Components 

Resource Cost 

Cost for VM instances 

Billed by the hour 

Transfer Cost 

Cost to copy data to/from cloud over network 

Billed by the GB 

Storage Cost 

Cost to store VM images, application data 

Billed by the GB, # of accesses 



Resource Cost  (by Storage System) 

Cost tracks performance 

Price not unreasonable 

Adding resources does not 
usually reduce cost 



Transfer Cost 

Cost of transferring data to/from cloud 

Input: $0.10/GB 

Output: $0.17/GB 

Transfer costs are a relatively large 

For Montage, transferring data costs more than 
computing it  ($1.75 > $1.42) 

Costs can be reduced by storing input data in the 
cloud and using it for multiple workflows 

Application Input  Output Logs 

Montage 4291 MB  7970 MB  40 MB  

Broadband 4109 MB  159 MB  5.5 MB 

Epigenome 1843 MB  299 MB  3.3 MB  

 

Application Input  Output Logs Total 

Montage $0.42  $1.32  < $0.01  $1.75 

Broadband $0.40  $0.03  < $0.01 $0.43 

Epigenome $0.18  $0.05  < $0.01  $0.23 

 
Transfer Sizes 

Transfer Costs 
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Large-Scale, Data-Intensive Workflows 

Montage Galactic Plane Workflow 

18 million input images (~2.5 TB) 

900 output images (2.5 GB each, 2.4 TB total) 

10.5 million tasks (34,000 CPU hours) 

 

An analysis is composed of a number of related workflows– 
an ensemble 

30 

John Good (Caltech) 



Workflow Ensembles 

Set of workflows 

Workflows have different 
parameters, inputs, 
etc. 

Prioritized 

Priority represents 
user’s utility 

31 

Montage 2MASS galactic plane (John Good, Caltech) 

2009 CyberShake sites (SCEC) 

USC 

San Onofre Nuclear Power Plant 



Problem Description 

 How do you manage ensembles in hosted 
environments ? 

Typical research question: 

How much computation can we complete given the 

limited time and budget of our research project? 

Constraints: Budget and Deadline 

Goal: given budget and deadline, maximize the 
number of prioritized workflows in an ensemble 

32 
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Explore provisioning and task 

scheduling decisions 

Inputs: 

Budget, deadline, prioritized ensemble, and task 
runtime estimates 

Outputs:  

Provisioning: Determines # of VMs to use over time 

Scheduling: Maps tasks to VMs 

Algorithms: 

SPSS: Static Provisioning, Static Scheduling 

DPDS: Dynamic Provisioning, Dynamic Scheduling 

WA-DPDS: Workflow-Aware DPDS 

33 



SPSS 

Plans out all provisioning and scheduling decisions 
ahead of execution (offline algorithm) 

Algorithm: 

For each workflow in priority order 

Assign sub-deadlines to each task 

Find a minimum cost schedule for the workflow such 
that each task finishes by its deadline 

If the schedule cost <= the remaining budget: accept the 
workflow 

Otherwise: reject the workflow 

Static plan may be disrupted at runtime 
34 



DPDS 

Provisioning and scheduling decisions are made at 
runtime (online algorithm) 

Algorithm: 

Task priority = workflow priority 

Tasks are executed in priority order 

Tasks are mapped to available VMs arbitrarily 

Resource utilization determines provisioning 

May execute low-priority tasks even when the 
workflow they belong to will never finish 

We assume no pre-emption of tasks 
35 



WA-DPDS 

DPDS with additional workflow admission test: 

Each time a workflow starts 

Add up the cost of all the tasks in the workflow 

Determine critical path of workflow 

If there is enough budget: accept workflow 

Otherwise: reject workflow 

Other admissions tests are possible 

e.g. Critical path <= time remaining 

36 



Dynamic vs. Static 

Task execution over time 
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Evaluation 

Simulation 

Enables us to explore a large parameter space 

Simulator uses CloudSim framework 

Ensembles 

Use synthetic workflows generated using parameters 
from real applications 

Randomized using different distributions, priorities 

Experiments 

Determine relative performance 

Measure effect of low quality estimates and delays 
38 



workflow size

fr
e
q
u
e
n
c
y

0 200 400 600 800 1000

0
1
0
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0

3
0

4
0

5
0

Ensemble Types 

Ensemble size 

Number of workflows (50) 

Workflow size 

{100, 200, 300, 400, 

500, 600, 700, 800, 900, and 1000} 

Constant size  

Uniform distribution 

Pareto distribution 

Priorities 

Sorted: Priority assigned by size 

Unsorted: Priority not correlated with size 
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Pareto Ensemble 



Performance Metric 

Exponential score: 

 

 
 

Key: High-priority workflows are more valuable 
than all lower-priority workflows combined: 

 

 

Consistent with problem definition 
40 

Score(e) =
�

w ∈ Completed(e)

2−Priority(w)

is the set of workflows in ensemble that was completed

2−p >
�

i = p+1, ...

2−i



Budget and Deadline Parameters 

Goal: cover space of interesting parameters 

41 Deadline 
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Relative Performance 

How do the algorithms perform on different 
applications and ensemble types? 

Experiment: 

Compare relative performance of all 3 algorithms on 5 
applications 

5 applications, 5 ensemble types, 10 random seeds, 10 
budgets, 10 deadlines 

Goal: Compare % of ensembles for which each 
algorithm gets the highest score 

42 
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Inaccurate Runtime Estimates 

What happens if the runtime estimates are 
inaccurate? 

Experiment: 

Introduce uniform error of ±p% for p from 0 to 50 

Compare ratios of actual cost/budget and actual 
makespan/deadline 

All applications, all distributions, and 10 ensembles, 
budgets and deadlines each 

Goal: See how often each algorithm exceeds 
budget and deadline 

44 



Inaccurate Runtime Estimate 

Results 
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Task Failures 

Large workflows on distributed systems often have 
failures 

Experiment: 

Introduce a uniform task failure rate between 0% and 
50% 

All applications, all distributions, and 10 ensembles, 
budgets and deadlines 

Goal: Determine if high failure rates lead to 
significant constraint overruns 

46 



Task Failure Results 
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Summary I--observations 

Commercial clouds are usually a reasonable alternative to 
grids for a number of workflow applications  

Performance is good 

Costs are OK for small workflows 

Data transfer can be costly 

Storage costs can become high over time 

Clouds require additional configurations to get desired 
performance 

In our experiments GlusterFS did well overall 

Need tools to help evaluate costs for entire computational 
problems (ensembles), not just one workflows 

Need tools to help manage the costs, the applications, and the 
resources 

 



Summary II—looking into the future 

There is a move to hosting more services in the 
cloud 

Hosting science will require  

•  a number of integrated services 

•  seamless support for  managing resource usage 
and thus cost and performance 

•  ease of use---can you do science as an app? 
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