
A Cloud-based Dynamic
Workflow for Mass

Spectrometry Data Analysis

http://pegasus.isi.edu deelman@isi.edu

Ashish Nagavaram, Gagan Agrawal,

Michael A. Freitas, Kelly H. Telu

The Ohio State University

Gaurang Mehta, Rajiv. G. Mayani, Ewa Deelman

USC Information Sciences Institute

http://pegasus.isi.edu

The Problem

 Execute a compute intensive, data-

parallel application within user-

given time constraints

• The application is sequential

• Want to outsource computation

to the cloud

Outline

• Application

• Benefits of cloud computing

• Approach

• Parallelize the application

• Use of workflow technologies

• Dynamic resource provisioning

• Evaluation on EC2

• Conclusions

Application: Mass Spectrometry

• Searches proteins and

peptides from tandem

mass spectrometry

data

• Uses Protein DB

• Sensitive probabilistic

scoring model

• Noise filtering

algorithm

Theoretical Protein database

Digest the sequence

Has the

sequence

been

searched

before?

Do not add it to the final result

Full scan search for finding

matching peptides

Clear insignificant peptides

Statistical analysis to

generate results

results

MS/MS data input file

yes

no

Basic characteristics of
the application

• Highly data parallel

• Performance depends on the data set, thus

not known a priory

• When partitioning the data, need to combine

results

• Opportunity/challenge to adapt the execution

environment to the specific problem

Workflows and Clouds

Benefits

User control over environment

Pay as you go model

On-demand provisioning / Elasticity

SLA, reliability, maintenance

Drawbacks

Complexity (more control = more work)

Cost

Performance

Resource Availability

Vendor Lock-In

Google’s Container-based
Data Center in Belgium
http://www.datacenterknowl
edge.com/

http://www.datacenterknowledge.com/
http://www.datacenterknowledge.com/

Approach

• Parallelize the application

• Use the workflow paradigm to structure the

application

• Use the Pegasus Workflow Management System

to manage the workflow execution

• Use cloud computing for execution

• Adapt the cloud to the application

• Use a flexible resource provisioning system to

acquire the necessary resources (Wrangler)

• Evaluate the parallelization (multi-core

machine) and adaptation (EC2 cloud)

Parallelize the application

Configuration

File

Input File

Input

Database

Python

Script

splitN

split2

split1

Sequential

phase

Merge

massmatrix

massmatrix

massmatrix

• Complex data structures (matrix of matrices)
• Need to re-index while maintain both local and global index

Pegasus
Workflow Management System

Developed since 2001

A collaboration between USC and the Condor Team at UW

Madison (includes DAGMan)

Used by a number of applications in a variety of domains

(astronomy, bioinformatics, earthquake science,

gravitational-wave physics, etc.)

Provides reliability—can retry computations from the point

of failure

Provides scalability—can handle large data and many

computations (kbytes-TB of data, 1-106 tasks)

Automatically captures provenance information

Can run on resources distributed among institutions,

laptop, campus cluster, Grid, Cloud

Pegasus Workflow Management

System

Provides a portable and re-usable workflow description

Enables the construction of complex workflows based on
computational blocks

Can compose workflows using Java, Perl, Python APIs,
systems Triana, Wings

Can be incorporated into portals

Infers data transfers

Infers data registrations

Lives in user-space

Provides correct, scalable, and reliable execution
Enforces dependencies between tasks

Progresses as far as possible in the face of failures

Executable Workflow

Generated by Pegasus

Pegasus:

Selects an execution site

Selects a data archive

Creates a workflow that

•Creates a “sandbox” on the execution site

•Stages data

•Invokes the computation

•Stages out data

•Registers data and Cleans up execution site

•Captures provenance information

Performs other optimizations

Ewa Deelman,
deelman@isi.edu
www.isi.edu/~deelman

Submit host

Outline

• Application

• Benefits of cloud computing

• Approach

• Parallelize the application

• Use of workflow technologies

• Dynamic resource provisioning

• Evaluation on EC2

• Conclusions

A way to make it work

Data

Storage

Work definition

Pegasus WMS

Local Resource

work

data resources

Grids and

Clouds

Pegasus makes use of available resources, but
cannot control them

A way to make it work

Data

Storage

Work definition

Pegasus WMS

Local Resource

work

data

Resource

Provisioner

Virtual Resource Pool

Resources requests

resources

Grids and

Clouds

Pegasus makes use of available resources, but
cannot control them

Building a Virtual Cluster

on the Cloud

Clouds provide resources, but the software

is up to the user

Running on multiple nodes may require

cluster services (e.g. scheduler)

Dynamically configuring such systems is not

trivial

Workflows need to communicate data—
often through files, need filesystems (or

stage data in/out for each task)

Adapt the cluster on demand

Wrangler (Gideon Juve,

USC/ISI)

• A service for provisioning and configuring
virtual clusters

• User specifies the virtual cluster configuration,
and Wrangler provisions the nodes and
configures them according to the user’s
requirements

• Users can specify custom pluggins for nodes
by writing simple scripts

• XML format for describing virtual clusters,
support for multiple cloud providers, node
dependencies and groups, automatic
distribution of configuration files and scripts

Wrangler
CloudCom 2011

	

Clients-- send requests to the coordinator

to launch, query, and terminate,

deployments

Coordinator-- a web service that manages

application deployments.

• accepts requests from clients

• provisions nodes from cloud providers

• collects information about the state of a

deployment

• acts as an information broker

Agents--run on VMs

• Manage VM configuration and monitors

health.
• collect information and reports the state

of the node to the collector

• configure the node with the software

and services specified by the user

• monitor the node for failures.

Plugins -- user-defined scripts that

implement the behavior of a node

• invoked by the agent to configure and

monitor a node
• each node can have multiple plugins.

A cloud Condor/NFS
configuration

The submit host can be in or out of the cloud

Parallel Execution *-core cluster

2.9 speedup on 4cores

8 core Intel Xeon node with 6GB of RAM

Theoretical database used was of 20 MB

The code was run for 6 different datasets (~50,000 records)

Create

parallel

workflow

(P>>N)
Submit to

Pegasus

Use Wrangler

to acquire N

resources

Take max time

(of N splits)

Determine

additional

resources

needed (M)

Use Wrangler

to acquire M
resources Approach to adaptation

Tconstraint

R

e
le

a
s
e
 s

p
lit

s
 t
o

a
v
a
ila

b
le

 r
e
s
o
u
rc

e
s

Ewa Deelman,
deelman@isi.edu
www.isi.edu/~deelman

Submit host
Performance

Monitor

Amazon EC2

Q
Wrangler

Determining the number of

resources needed

User specifies the deadline Tconstraint

Capture performance information in the first N

executions (Tper_split)

Tremaining = Tconstraint - (2 x Tper_split)

Calculate the cumulative remaining execution

time

Texecution_predicted = Tper_split x (split_count – 2N)

Estimate needed cores

Max

N 1
T

T
Nodes

raintt ime_const

predictedexecution_

required

Execution on EC2

The algorithm chooses how many cores to add

Running a Dataset on EC2

Conclusions

• Displayed a framework for dynamic

execution of scientific workflows

• User specified time constraint can be used

to drive the allocation of resources

• Used real-time performance information for

choosing the number of resources

• Possible extensions

• More dynamic approach that monitors the

execution over the lifetime of the application

• Quality of results vs time

• Including other criteria for resource acquisition

(cost)

