Experiences Using GlideinWMS and the Corral Frontend Across Cyberinfrastructures

Mats Rynge, Gideon Juve, Gaurang Mehta, Ewa Deelman Information Sciences Institute, University of Southern California

Krista Larson, Burt Holzman Fermi National Accelerator Laboratory

Igor Sfiligoi, Frank Würthwein Department of Physics, University of California, San Diego **G. Bruce Berriman** Infrared Processing and Analysis Center, California Institute of Technology

Scott Callaghan Southern California Earthquake Center, University of Southern California

Outline

Introduction

GlideinWMS

Corral – a new GlideinWMS Frontend

Experiment Setup

SCEC CyberShake – Example application

IPAC Periodogram – Example application

Conclusions

Motivation

Show that a researcher can bring in and combine local resources and national infrastructures to her/his desktop computer

Local Condor pool,

Open Science Grid,

TeraGrid

glideinWMS with the Corral frontend

Bringing National Cyberinfrastructure Resources to the Scientist's Desktop

Traditional HPC/HTC

ssh/scp access

Grid interfaces?

Copy data / log in to head node / set up environment / submit jobs

Using more than one resource? Repeat. Desktop anchored Virtual Resource

Familiar environment

Access to local data

Output location?

Flexibility

Running across multiple infrastructures protects the scientist from downtimes, technical site problems, allocation issues, and resource availability

Infrastructure Differences

High Throughput Computing

Serial Codes

Virtual Organization mapping (many VO users to one local UID)

Opportunistic

High Performance Computing

Parallel Codes

Automatically mapped (one VO, individual accounts)

Allocations

Condor Based Virtual Clusters GlideinWMS

Pilot Jobs

Overlay a personal cluster on top of grid resources

Condor based pilots:

Glideins

GlideinWMS Overview

- Developed to meet the needs for the CMS (Compact Muon Solenoid) experiment at the LHC (Large Hadron Collider)
- Frontend watches job queue for demand
- Factory uses grid interface to submit jobs (Condor startds)
- >15,000 concurrent jobs in production, 29 million
 CPU hours over 2 years

A New GlideinWMS Frontend

Corral

- Developed by Pegasus Workflow Management
 System team
- Short jobs
- Mixed HPC/HTC workloads
- Repurposed as a glideinWMS frontend

glideinWMS Frontends

VO Frontend

Concept of VOs Service certificates Glideins shared/reused between users Individual users Personal certificates Glideins tied to user

Corral

This flexibility allows Corral to acquire a mix of resources with different user/group mappings when running across infrastructures

Multislot Requests

- Mapping demand from user job queue to a factory request to a single grid job requesting N slots
- Efficiency grow the pool quickly
- Queue limits only allowed 7 jobs in the queue

Example Applications Experiment Setup

Desktop Setup

- Condor central manager
 - Collector for the glideins to register to
 - Schedd submit jobs
- X.509 security
- 10 sub collectors
- From the users point of view:

Standard Condor pool

Pegasus Workflow Management System

Abstract Workflows - Pegasus input workflow description

- Workflow "high-level language"
- Only identifies the computation, devoid of resource descriptions, devoid of data locations

Pegasus

- Workflow "compiler" (plan/map)
- Target is DAGMan DAGs and Condor submit files
- Transforms the workflow for performance and reliability
- Automatically locates physical locations for both workflow components and data
- Provides runtime provenance

Southern California Earthquake Center CyberShake

Example Application

CyberShake

Probabilistic seismic hazard analysis workflow

- How hard will the ground shake in the future?
- Considers a set of possible large earthquakes
- 415,000 earthquakes is typical

Uses Pegasus and Condor DAGMan for workflow management

- Hierarchal workflows
- Small set of large parallel jobs
- 840,000 serial jobs, in 78 sub workflows

PreCVM SGTGen-X SGTGen-Y SGTGen-J SGL SGT-Z PP1 DAX PP82 DA Slip Extractio for each rupture Seis zi

Strain Green Tensor Generation Sub Workflow

CyberShake Workflow

82 Post Processing Sub Workflows

Set of PSHA curves interpolated creates hazard map for an area

Probabilistic Seismic Hazard Analysis (PSHA) curve. Estimates the probability that earthquake ground motions will exceed some intensity measure.

A mix of MPI and serial jobs

MPI Jobs Serial Jobs

High-Performance Periodogram Calculations in the Search for Exoplanets

Example Application

Periodograms

- Current dataset: ~600,000 stars
- Calculates the significance of different frequencies in time-series data to identify periodic signals.
- Light curve -> Periodogram -> Event -> Event database
- FFT
- Three different algorithms

BLS periodogram for Kepler -4b, the smallest transiting exoplanet discovered by Kepler to date.

Workflow Details

• 11 sub workflows, ~ 50000 tasks each

- Wall time based job clustering
 - Simple binning
 - Target: 1 hour
- ~ 800 jobs per sub workflow
- Execute across available resources: Local, Open Science Grid, TeraGrid

Size of Condor Pool

🗕 🗕 TACC Ranger (TeraGrid)

Conclusions

User Experience

The users were shielded from runtime problems such as preemption

Only discovered when examining logs and graphs

Desktop Scalability?

Networking

Glideins not being able to register

Backups

Disk and network I/O affected glideins

800 GB output dataset

Thank you!

- GlideinWMS: <u>http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc.prd/index.html</u>
 - Pegasus: <u>http://pegasus.isi.edu</u>
 - SCEC: <u>http://www.scec.org/</u>
 - IPAC: <u>http://www.ipac.caltech.edu/</u>