
Rafael Ferreira da Silva, Karan Vahi, Mats Rynge, Rajiv Mayani, Ewa Deelman
University of Southern California – Information Sciences Institute
**In collaboration with the HTCondor Team – University of Wisconsin, Madison

LEARN MORE
Get in Touch
https://pegasus.isi.edu – pegasus-support@isi.edu
Pegasus is funded by the National Science Foundation
under the OAC SI2-SSI program, grant #1664162

PEGASUS WORKFLOW MANAGEMENT SYSTEM
Overview of the Pegasus WMS

CANONICAL WORKFLOW EXAMPLE
From Abstract to Executable Workflows

JUPYTER NOTEBOOKS
Executing Scientific Workflows using the Pegasus Jupyter Python API

SCIENTIFIC APPLICATIONS
Highlighted Applications - https://pegasus.isi.edu/applications

Enabling End-to-End Experiment Sharing and Reuse with Workflows via Jupyter Notebooks

• Pegasus is a system for mapping and executing abstract application workflows over a range
of execution environments

• The same abstract workflow can, at different times, be mapped different execution
environments such as XSEDE, OSG, commercial and academic clouds, campus grids, and
clusters

• Pegasus can easily scale both the size of the workflow, and the resources that the workflow is
distributed over. Pegasus runs workflows ranging from just a few computational tasks up to 1
million

• Stores static and runtime metadata associated with workflow, files and tasks. Accessible via
command line tools and web based dashboard

• Pegasus-MPI-Cluster enables fine-grained task graphs to be executed efficiently on HPC
resources

CONTAINERS
Using Containers for Running User Applications

Container Execution Model

• Sets up a directory to run a user job in
• Pulls in all the relevant input data, executables, and the container image to execution

directory
• Optionally, loads the container from the container image file and sets up the user to

run as in the container (only applicable for Docker containers)
• Mounts the job directory into the container as /scratch for Docker containers, while

as /srv for Singularity containers
• Container will run a job specific script that figures out the appropriate Pegasus worker

to use in the container if not already installed, and sets up the job environment to use
it, before launching the user application using pegasus-kickstart.

• Optionally, shuts down the container (only applicable for Docker containers)
• Ships out the output data to the staging site
• Cleans up the directory on the worker node

Application containers provides a solution to
package software with complex dependencies
to be used during workflow execution

Pegasus has support for application containers in
the non-shared filesystem or condorio data
configurations using PegasusLite.

The Pegasus-Jupyter integration aims to facilitate the usage of
Pegasus via Jupyter notebooks. In addition to easiness of usage,
notebooks foster reproducibility (all the information to run an
experiment is in a unique place) and reuse (notebooks are portable
if running in equivalent environments)

Capabilities Highlighted
• Data Management
• Data Reuse
• Job Clustering
• Cross Site Runs

Dashboard
Real-time monitoring of workflow
executions. It shows the status of the
workflows and jobs, job characteristics,
statistics and performance metrics.
Provenance data is stored into a relational
database.

Rafael Ferreira da Silva
rafsilva@isi.edu

System	Architecture

APIs

Users

Interfaces

Pegasus Dashboard

OpenStack, Eucalyptus, Nimbus

Pegasus WMS

Mapper

Engine

Scheduler

Monitoring
& Provenance

Workflow DB

Logs

Clouds

N
ot

ifi
ca

tio
ns

j1
j2

jn Job Queue

…

Cloudware

Amazon EC2, Google Cloud,
RackSpace, ChameleonCompute

Amazon S3, Google Cloud Storage,
OpenStackStorage

Distributed Resources
Campus
Clusters

Local Clusters

Open Science
Grid

XSEDE

HTCondor
GRAM

PBS LSF SGE

Middleware C
O
M
P
U
T
E

GridFTP

Storage

Other workflow
composition tools:

Submit Host

HTTP

FTP SRM

IRODS SCP

Software Availability

• Release Schedule
• Major Release every 9 months; Minor releases every 4 months

• Download Options
• Source Code publicly hosted on GitHub
• Binary packages for Linux and MAC
• YUM/APT repositories with RPM/DEB packages

• Documentation / Training Materials
• Tutorials via Virtual Machine, EC2, and Docker images
• Support via Email lists and online chat rooms

Downloads and Usage

Astronomy and Physics

Pegasus powered LIGO
analysis workflows to detect
gravitational waves

0.2 Second before the black holes collide. Image credit: SXS/LIGO

LIGO
pyCBC

Periodogram workflows help
detect extra solar planets

Galactic Plane workflow
generates mosaics for astronomy
surveys

Seismology

CyberShake workflows for
seismic hazard analysis of
LA basin

Broadband workflows for
accurate predictions of
ground motions

Bioinformatics
Quality control workflows
for data submissions to
NRGR repository and PAGE
consortium

Imputation workflows on
PAGE data

Workflows for Genome and
Transcriptome free analysis
of RSEQ

Brain span workflows help
study gene expression in
the brain

Soybean Knowledge base
(SoyKB) workflow for
resequencing soy-bean
germplasm lines

RNA Sequencing
workflows for generating
Cancer Genome Atlas

Materials Science

Spallation Neutron
Source Workflows
study molecular
dynamics and neutron
scattering intensity
calculations

Neutrons, simulation analysis of tRNA-nanodiamond
combo could transform drug delivery design
principles. Image credit: OLCF, ORNL

Workflow Wall Time: 47 min, 23 secs

Pegasus-Jupyter Python API
The first step to enable Jupyter to use the Pegasus API is to import the Python Pegasus Jupyter API.
The instance module will automatically load the Pegasus DAX3 API and the catalogs APIs.

Pegasus reads workflow descriptions from DAX files. The term "DAX" is short for "Directed Acyclic
Graph in XML". DAX is an XML file format that has syntax for expressing jobs, arguments, files,
and dependencies.

The Catalogs API

Running and Monitoring Workflows

Additional Capabilities

Workflow	statistics

Visualizing	the	Executable	Workflow

Containers currently can only be specified in the Transformation Catalog

Users have the option of either using a different container for each
executable or same container for all executables

