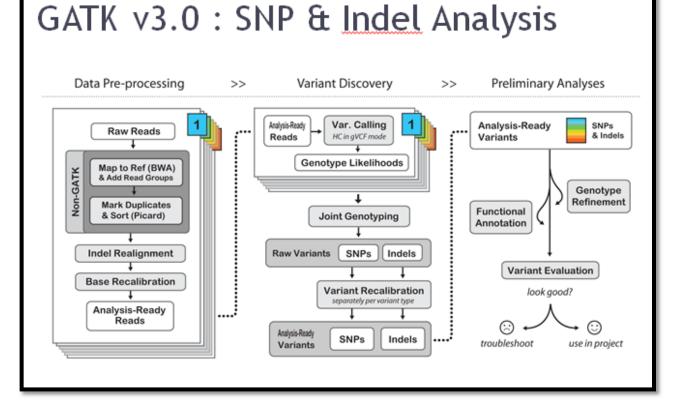

Trupti Joshi^{1,2,3}, Babu Valliyodan^{2,3,4}, Saad M. Khan^{2,5}, Yang Liu^{2,5}, Joao V. Maldonado dos Santos⁴, Yongqing Jiao^{3,4}, Dong Xu^{1,2,3}, Henry T. Nguyen^{2,3,4}, Nicole Hopkins⁶, Mats Rynge⁷, Nirav Merchant⁶ Department of Computer Science; ² Christopher S. Bond Life Sciences Center; ³ National Center of Soybean Biotechnology; ⁴ Division of Plant Sciences; ⁵ Informatics Institute; University of Missouri, Columbia, MO. ⁶ iPlant Collaborative, University of Arizona ⁷ Information Sciences Institute, University of Southern California

Introduction

With the advances in next generation sequencing (NGS) technology and significant reduction in sequencing costs it is now possible to sequence large sets of crop germplasm and generate whole genome scale structural variations and genotypic data. In depth informatics analysis of the genotypic data can provide better understanding of the links with the observed phenotypic changes. This approach can be used to further understand and study different traits for the improvement of crops by design.

We have conducted resequencing of 1000+ soybean germplasm lines selected for major traits including oil, protein, soybean cyst nematode resistance (SCN), abiotic stress resistance (drought, heat and salt) and root system architecture. We have conducted initial bioinformatics analysis of the NGS data from these 1000+ lines. The analysis identified SNPs and insertion, deletions by comparisons against the soybean reference genome, Williams 82 using GATK software. We have also conducted structural variation analysis in terms of copy number variations (CNV) using CNV-seq software. As a case study, we have selected 25 out of the 1000+ resequenced genomes for the in depth analysis of SCN resistance and further classified them into four different categories of resistance and susceptibility levels. The GWAS analysis helped identify major SNPs associated with the phenotypic changes between these lines. We have performed analysis using Haploview for linkage disequilibrium, haplotype identification and Cladogram tree generation. We have also applied generalized linear models (MLM) using TASSEL for identifying SNPs significant for phenotypic changes between the various resistance and susceptibility categories of this trait.

The informatics analysis results help set a strong foundation for handling and analysis of subsequent large scale resequencing efforts in future. The NGS resequencing data represents a rich source of information and can lead to significant discoveries when it comes to mining genotypic inferences. All data including GWAS, SNP and genome structure information generated from this resequencing project can be accessed through Soybean Knowledge Base (SoyKB) at http://soykb.org.

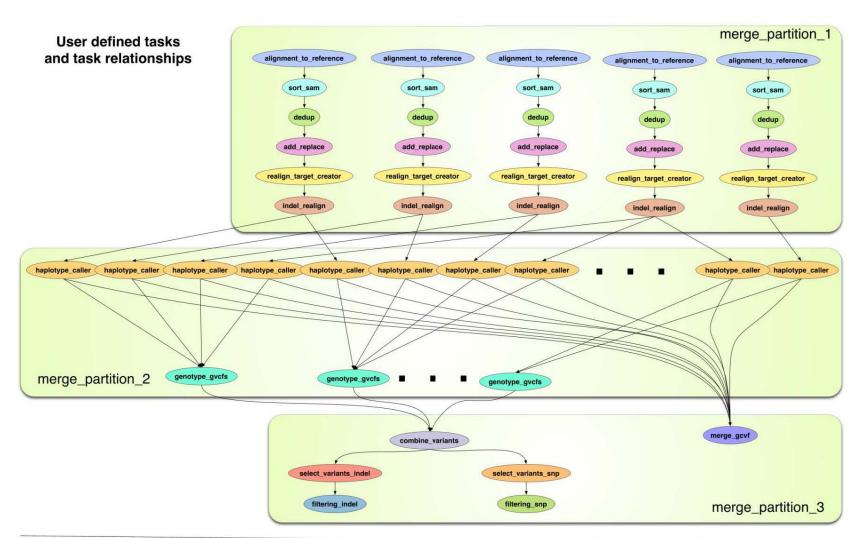


Bioinformatics Analysis

Pipeline

We have developed a bioinformatics pipeline for the analysis of the resequencing data as above. The analysis involves quality assessment and filtering steps with FastQC and identifies SNPs and insertions/deletions by comparison against the soybean reference using GATK Williams 82 genome SNPs analysis pipelines. The from GATK analysis are generated used for the subsequent downstream analysis as described below.

GATK Analysis


Sample	Total Reads	% Mapped	% Mapped unique			Indel_HC filtered
Sampic	Totar Acado		unique	coverage		mercu
HN001	178012181	99.39930459	85.66	16.46	921174	139546
HN002	189725050	99.28611957	86.19	17.543	1747381	305884
HN003	197817579	99.33175049	85.55	18.291	1867448	300665
HN004	175095378	99.31592198	85.59	16.19	1600603	259031
HN005	200314390	99.3604139	85.83	18.522	1801279	303319
HN006	185557717	99.23813732	87.06	17.158	1370865	230198
HN007	195461975	99.23788911	85.81	18.073	1543388	253697
HN008	165493144	99.10996253	85.8	15.302	1619672	313594
HN009	188816175	99.18097589	86.97	17.459	1602653	304931
HN010	149643309	99.36637261	85.43	13.837	1268596	181983
HN011	161364750	98.94882866	84.73	14.921	1236654	225272
HN012	161134565	99.31436747	84.64	14.899	1654295	250173
HN013	189992517	99.34214778	86.65	17.568	1062485	178084
HN014	167022679	99.36191599	84.95	15.444	1079994	153715
HN015	195359928	99.20419401	84.33	18.064	1840714	279665
HN018	174490395	99.26196797	85.6	16.134	1678565	282060
HN019	197618994	99.40807157	86.4	18.273	1850267	328124
HN020	132029402	99.33248505	84.69	12.208	1019364	155568
HN021	189123447	99.41646527	85.52	17.487	1622514	253096
HN022	179241418	99.50280744	84.75	16.574	1740524	266309
HN023	151464063	99.43830108	85.95	14.005	1126029	189553
HN024	211827511	99.45493105	85.53	19.587	1672883	264496
HN026	182524198	00 38366802	85 35	16.877	1458105	232437

Processing on XSEDE and iPlant Infrastructures

In collaboration with iPlant and XSEDE Extended Collaborative Support Service (ECSS) the analysis pipeline was implemented in Pegasus WMS. Primarily XSEDE compute resources are used for executing the pipeline, and iPlant provides infrastructure for managing the overall analysis using Pegasus appliance (VM) in iPlant cloud platform Atmosphere and the storage of, and access to, data products using the iPlant Data Store. Making this pipeline easy to use by multiple research groups with similar analytics needs.

The NGS resequencing data (~25 TB) is housed in the iPlant Data Store (iDS) developed using iRODS, this allows rapid data provisioning and geo-replication. Data can be replicated from the primary data store at U. Arizona data center for iPlant to the dedicated iDS resource server at TACC, allowing low latency data access to the inputs and output when running workflow steps on TACC Stampede. iDS supports the pre and post analysis data management tasks such as integration with Genome browsers, metadata tagging and searching.

The use of Pegasus to manage workflow, Github for handling versioned workflow steps, iPlant Atmosphere and iDS for coordinating execution and data management tasks has proved to be a reproducible, reliable and

	102024190	99.36300602	00.00	10.0//	1430103	25245
HN027	202205881	99.37399793	86.11	18.697	972851	14515

Table 1. GATK statistics for analysis of 25 soybean resequencing germplasm.

scalable solution. This platform allows marshaling of distributed computing resources (XSEDE, USC/ISI, U. Arzona) allowing teams of biologists to effectively manage computational tasks associated with large scale genome analysis.

TASSEL: GWAS Analysis

We also conducted CNV analysis using CnMOPs tool to identify the copy number gain and loss between genomes.

Copy Number Variation Analysis

Haploview : LD, Haplotype Analysis

We performed GWAS analysis on the SNP data generated by GATK using TASSEL. We performed Generalized linear models (GLM) and Mixed linear models (MLM) analysis on the datasets for several chromosomes and identified the significant SNPs based on a pvalue cutoff of 1e-8, using the SCN resistance/susceptibility categories assigned to our 25 genomes in SCN case study as below. We identified total 3337 significant SNPs using GLM amongst the 13 studied chromosomes that differentiate the SCN resistant and susceptible genomes. Significant SNPs were only identified using GLM. Cladogram using NJ method was also generated. Generalized linear models (GLM) :

Sample	Country of Origin	RACE 1	RACE 2	RACE 3	
Ref		Susceptible	Susceptible	Susceptible	
H001	U.S.	Susceptible	Susceptible	Resistant	
H002	China	Resistant	Susceptible	Resistant	
H003	China	Resistant	Mod. Resistant	Resistant	
H004	China	Resistant	Resistant	Resistant	
H005	China	Resistant	Mod. Resistant	Resistant	
H006	South Korea			Susceptible	
H007	South Korea			Mod. Susceptible	
H008	China	Resistant	Susceptible	Resistant	
H009	China	Mod. Susceptible	Mod. Resistant	Resistant	
H010	Japan	Resistant	Mod. Resistant	Resistant	
H011	China	Resistant	Mod. Resistant	Resistant	
H012	China			Mod. Susceptible	
H013	U.S.	Mod. Resistant	Resistant	Resistant	
H014	U.S.			Susceptible	
H015	China	Resistant	Mod. Resistant	Resistant	
H018	China	Resistant	Mod. Resistant	Resistant	
H019	China	Resistant	Mod. Susceptible	Resistant	
H020	China		Susceptible	Resistant	
H021	Japan	Mod. Susceptible	Susceptible	Resistant	
H022	China	Resistant		Resistant	
H023	South Korea			Susceptible	

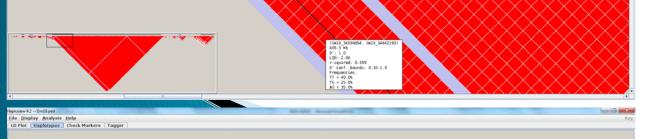
Population structure + Marker effect + residual

Mixed linear models (MLM) :

Population structure + Marker effect + Individuals + residual

	Number of SNPs													
Chromosome	Gm01 (D1a)	Gm04 (C1)	Gm05 (A1)	Gm06 (C2)	Gm08 (A2)	Gm10 (O)	Gm11 (B1)	Gm12 (H)	Gm14 (B2)	Gm17 (D2)	Gm18 (G)	Gm19 (L)	Gm20 (l)	Total
All	391865	465305	225871	477299	355100	426873	302612	294649	294649	412418	834040	435679	341950	5265510
SNPs/SCN	65	364	68	748	819	127	70	78	106	157	628	54	53	3337
Race 1	9	216	7	174	742	33	5	9	16	11	204	8	8	1442
Race 2	4	6	1	13	5	4	4	7	3	94	38	13	4	196
Race 3	52	142	60	561	72	90	61	62	87	52	386	33	41	1699

SNPViz : Tree Clustering


0.1 Expected Substitutions per Site

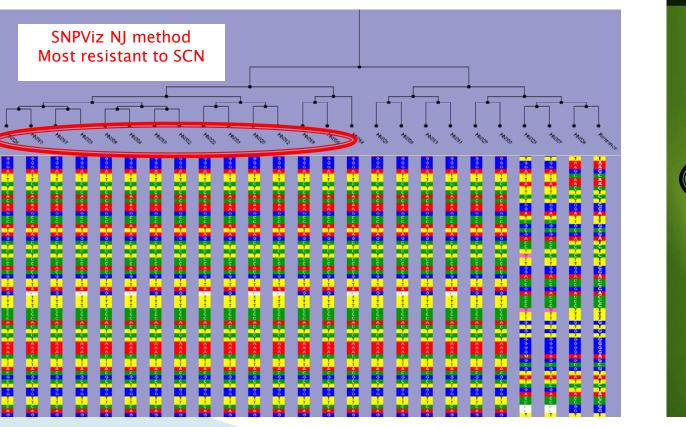
We also generated tree using NJ

Circular Font Size: 15 - Save

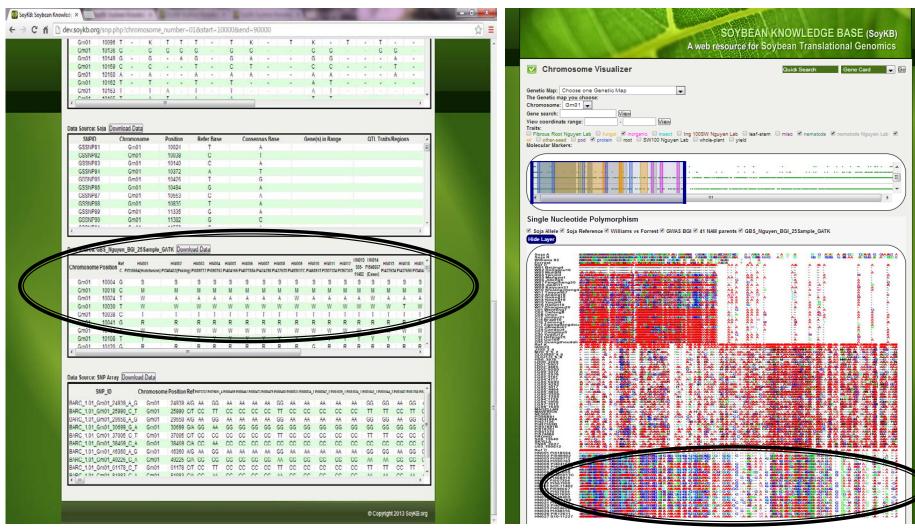
Table 5. Significant SNPs identified using GLM analysis in TASSEL for thirteen soybean chromosomes.

Soybean Knowledge Base (SoyKB)

Haplotypes Gm18


and

H024	China	Mod. Susceptible	Susceptible	Mod. Susceptible	
H026	North Korea	Resistant		Mod. Susceptible	
H027	U.S.	Susceptible	Mod. Resistant	Mod. Resistant	


Table 4. SCN Resistance / Susceptible Categories for Race 1, 2 and 3 for 25 genomes in case study.

We have also performed linkage disequilibrium (LD) haplotype analysis using Haploview using chromosome Gm18 data. Analysis for all other soybean chromosomes and continued analysis for identification on QTL regions for specific traits is currently on-going.

method in our in house developed SNPViz tool, which is incorporated into SoyKB for automatic retrieval of the 25 genomes GBS datasets.

is available for SoyKB at in The data access http://soykb.org

