
Pegasus WMS: Enabling Large Scale Workflows on National Cyberinfrastructure
Karan Vahi, Ewa Deelman, Gideon Juve, Mats Rynge, Rajiv Mayani, Rafael Ferreira da Silva

University of Southern California / Information Sciences Institute

• Pegasus is a system for mapping and executing abstract
application workflows over a range of execution
environments.

• The same abstract workflow can, at different times, be
mapped different execution environments such as XSEDE,
OSG, commercial and academic clouds, campus grids, and
clusters.

• Pegasus Workflow Management System (WMS) consists of
three main components: the Pegasus Mapper, HTCondor
DAGMan, and the HTCondor Schedd.

Overview

Acknowledgments:
• Pegasus WMS is funded by the National Science Foundation OCI SDCI program grant #1148515.
• HTCondor : Miron Livny, Kent Wenger, University of Wisconsin Madison

• Portability / Reuse - User created abstract workflows can
easily be run in different environments without alteration.
The same workflow can run on a single system or across a
heterogeneous set of resources.

• Performance - The Pegasus Mapper can reorder, group, and
prioritize tasks in order to increase the overall workflow
performance.

• Scalability - Pegasus can easily scale both the size of the
workflow, and the resources that the workflow is distributed
over. Pegasus runs workflows ranging from just a few
computational tasks up to 1 million.

• Data Management - Pegasus handles replica selection, data
transfers and output registrations in data catalogs. These
tasks are added to a workflow as auxiliary jobs by the
Pegasus Mapper.

• Reliability - Jobs and data transfers are automatically retried
in case of failures. When errors occur, Pegasus tries to
recover when possible by retrying tasks, by retrying the
entire workflow and by providing workflow-level
checkpointing, by re-mapping portions of the workflow

• Monitoring and Debugging– Command line monitoring and
debugging tools to debug large scale workflows. Debugging
tools such as pegasus-analyzer helps the user to debug the
workflow in case of non-recoverable failures.

• Workflow and Task level notifications (email, instant
messenger, user defined script callout)

Features

http://pegasus.isi.edu

Problem: How can you efficiently execute
fine-grained workflows on HPC resources?
These workflows can have a large number of
tasks which cannot all be submitted to the
HPC resource’s queue, and the tasks can
have a mix of different core and memory
requirements.

Solution: The workflow is partitioned into
independent sub graphs, which are
submitted as self-contained Pegasus MPI
Cluster (PMC) jobs to the remote sites.

A PMC job is expressed as a DAG and PMC
uses the master-worker paradigm to farm
out individual tasks to worker nodes. PMC
acts a scheduler and considers core and
memory requirements of the tasks when
making scheduling decisions.

PMC can be easier to setup than pilot jobs /
glideins as no special networking is required.
PMC relies on standard MPI constructs.

Fine-grained Workflows on XSEDE Using MPI Clustering

DAX Generator API

Easy to use APIs in Python,
Java and Perl to generate an
abstract workflow describing
the users computation.

Above is a simple two node
hello world example.

Abstract Workflow (DAX)

The abstract workflow rendered as XML .
It only captures the computations the
user wants to do and is devoid of any
physical paths. Input and output files are
identified by logical identifiers. This
representation is portable between
different execution environments.

Abstract to Executable Workflow Mapping

The DAX is passed to the Pegasus Mapper and it generates an
executable workflow that can be run on actual resource.

The above example highlights addition of data movement
nodes to staging in the input data and stage out the output
data; addition of data cleanup nodes to remove data that is no
longer required; and registration nodes to catalog output data
locations for future discovery.

Workflow Design and Mapping Canonical Workflow Example

Additional Capabilities Highlighted

Data Reuse: Jobs B and D are removed from the workflow as file
f.d already exists. The f.d is staged in , instead of regenerating it
by executing jobs B and D.

Job Clustering: Jobs C and E are clustered together into a single
clustered job.

Cross Site Run: Single Workflow can be executed on multiple
sites, with Pegasus taking care of the data movement between
the sites.

Monitoring and Debugging

At runtime, a database is populated with workflow and
task runtime provenance, including which software was
used and with what parameters, execution environment,
runtime statistics and exit status.

Pegasus comes with command line monitoring and
debugging tools. A web dashboard now allows users to
monitor their running workflows and check jobs status and
output.

	Slide Number 1

