Karan Vahi, Mats Rynge, Rafael Ferreira da Silva, Gideon Juve, Rajiv Mayani, Ewa Deelman
University of Southern California / Information Sciences Institute

Compute Pipelines with Advanced Data Management using Pegasus WMS USC Viterhi

School of Engineering

Infarmaz‘im Sciences Institute

Pegasus is a system for mapping and executing abstract
application workflows over a range of execution
environments.

The same abstract workflow can, at different times, be
mapped different execution environments such as
XSEDE, OSG, commercial and academic clouds, campus
grids, and clusters.

Pegasus can easily scale both the size of the workflow,
and the resources that the workflow is distributed over.
Pegasus runs workflows ranging from just a few
computational tasks up to 1 million.

Pegasus Workflow Management System (WMS) consists
of three main components: the Pegasus Mapper,
HTCondor DAGMan, and the HTCondor Schedd.

HICondd

High Throughput Computing

Example: Montage Galactic Plane

#!/usr/bin/env python

from Pegasus.DAX3 import

import sys
import os

Create a abstract dag

dax = ADAG("hello world")

Add the hello job

hello = Job(namespace="hello_world",

name="hello", version="1.0")

b = File("f.b")

Workflow Design and

<?xml version="1.0" encoding="UTF-8"7>

<!—— generator: python ——>
<adag xmlns="http://pegasus.isi.edu/schema/DAX"
version="3.4" name="hello_world">

<!—— describe the jobs making
up the hello world pipeline —>
<job id="ID0@000OA1" namespace="hello_world"
name="hello" version="1.0">

hello.uses(a, link=Link.INPUT) <uses name="f.b" link="output"/>
hello.uses(b, link=Link.OUTPUT) <uses name="f.a" link="input"'/>
dax.addJob(hello) </job>

Add the world]Ob (depends on the hello]Ob) <j0b id="1D0000RN2" namespacez"hello_world"

world = Job(namespace="hello_world",

name="world", version="1.0")

¢ = File("f.c")
world.uses(b, link=Link.
world.uses(c, link=Link.
dax.addJob(world)

INPUT)
OUTPUT)

Add control-flow dependencies

dax.addDependency (Dependency(parent=hello,
child=world))

Write the DAX to stdout

dax.writeXML(sys.stdout)

computation.

DAX Generator API

Easy to use APIs in Python,
Java and Perl to generate an
abstract workflow

describing the users

Above is a simple two node
hello world example.

name="world" version="1.0">
<uses name="f.b" link="input"/>
<uses name="f.c" link="output"/>
</job>
<!—— describe the edges in the DAG —>
<child ref="1D0000002">
<parent ref='"1ID0000001" />

</child>
</adag>

Abstract Workflow (DAX)

The abstract workflow rendered as XML.
It only captures the computations the
user wants to do and is devoid of any
physical paths. Input and output files are
identified by logical identifiers. This
representation is portable between

different execution environments.

Mapping

f.a

@

LEGEND
O Unmapped Job

f.b

. Compute Job
mapped to a site

Stage-in Job

—@-

. Stage-Out Job

Registration Job

Create Dir Job

Abstract Workfl
S SO Cleanup Job

QOO0 @O

Executable Workflow

Abstract to Executable Workflow (Condor DAG) Mapping

The DAX is passed to the Pegasus Mapper and it generates
a HTCondor DAGMan workflow that can be run on actual
resource.

The above example highlights addition of data movement
nodes to staging in the input data and stage out the output
data; addition of data cleanup nodes to remove data that is
no longer required; and registration nodes to catalog
output data locations for future discovery.

e ™ a N\
SUBMIT HOST

Abstract

Remote Tile Setup N / N / Wofkﬁ)c
Identifies the inputs and generates
workflow descriptions “~ S~ amazon |s3
. webservices™
Local Tile Setup v v
oo Intermediate Produced 0
Files Dataset
J
= > =< > =~ = = ﬂ

Montage 5
Degree
Workfow

J

O<—0+0

Remote Extra Cleanup Jobé

- Delete extra untracked files

amazon [HC 2

Workfow
_ J

Pegasus
Planner

Workflow
Setup
Job

Master Worker Worker Worker Worker Worker Workflow

Stagein

USC

SCIENCES
INSTITUTE

Published original
survey data hosted at
IPAC

1%

Caching / rate limiting
Squid server at ISI

 Generates mosaics from existing IPAC datasets

 Used to generate tiles 360 x 40 around the galactic equator

* Tiles are 5° x 5° with 1° overlap with neighbors

 One workflow for each of 17 bands (wavelengths)

 Each wor
 Each wor
in F

Kf

Kf]

ow uses 3.5TB of input imagery (1.6 million files)

ow consumes 30K CPU hours and produces 1,001 tiles
TS format — data to be published publically in Amazon S3

Job

Workflow
Stageout
Job

Data
Cleanup
Job

@ Executable
- Workflow

Condor Scheda

Queue

(.

HTCondor
DAGMan

-

J

(COMPUTE ELEMENT - 1

Data Flow For Pegasus Workflows at Runtime

\
\
Executes On
Submit Host @
’I ’/’,
,I ”’/

WNPU!Rﬁ.lTE? mpugRﬁlTEr? Data Flow For a Workflow with
o o Pegasus

S3 S3

1. Stagein Jobs transfer input data
for the workflow to the staging

WN . @ Pelg:;?:rslcléte HTTP S it e
Head
Node WN. . .
e N 2. Pegasus Lite wrapped jobs, when
WN . STAGING STORAGE
N S ELEMENT they start on compute worker
\ N :" Supports independent . .
N GET [Protocolsforhe getand nodes, pull in the input data from
\ // INTERFACE] .
ST T staging site
e AN ;1?5:
(COMPUTE ELEMENT- n L2 A Al 3. The compute job executes on a
- PUT Protocols Supported: .
— L _ _ — V| INTERFACE sru local directory on the worker
| OB (Y| 1w node
ea = ‘ I .
Node WN. ® | |F;g03|;s
WN | .
§ .WN. . - 4., The Pegasuslite wrapper pushes
J \\
e the output data from the worker
Submit Hos . .
o @ node back to the staging site
OUTPUT SITE)
HEGEND 5. The Stageout Jobs transfer the

GridFTP
O Directory Setup JOb‘ Data Stageout Job Pegasus Lite Compute Job o

O Data Stagein Job .Directory Cleanup Job W . Worker Node

Pegasus Data Staging Configurations

on OSG with SRM as data staging server.

. relevant output data out to the
b g output site from staging site

Non Shared Filesystem with Staging Site : Data is staged by Pegasus Lite at runtime from an external staging site. Popular

CondorlO Data is staged using Condor File Transfers from submit node. Popular on OSG and Cloud Environments.

Shared Filesystem (Head Node and the worker nodes of execution sites share a filesystem). Popular on XSEDE and clusters.

Data Reuse Example

f.a f.a
LEGEND
f.b fc | (:) Unmapped Job

Compute Job
. mapped to a site A

O Compute Job
mapped to a site B

O Stage-in Job
. Stage-Out Job

O Registration Job

f.op
O Create Directory Job
O Cleanup Job
Abstract Workflow

Final Executable Workflow ' Clustered Job

Additional Capabilities Highlighted

Data Reuse: Jobs B and D are removed from the workflow as
file f.d already exists. The f.d is staged in, instead of
regenerating it by executing jobs B and D.

Job Clustering: Jobs C and E are clustered together into a
single clustered job.

Cross Site Run: Single Workflow can be executed on multiple
sites, with Pegasus taking care of the data movement between
the sites.

Monitoring and Debugging

At runtime, a database is populated with workflow and
task runtime provenance, including which software was
used and with what parameters, execution environment,
runtime statistics and exit status.

Pegasus comes with command line monitoring and
debugging tools. A web dashboard now allows users to
monitor their running workflows and check jobs status

and output. IS, —
*\
' bamboo.isi.edu:8000/root/7080/workflow/1/chart

M | Workflow | Charts

ssssssssssssssssssssss

+m°

e

M | Workflow | Statistics

|

Workflow Wall Time
Workflow Cumulative Job Wall Time
Cumulative Job Walltime as seen from Submit &

Workflow Retries

~Workflow Statistics

|

Type Succee ded Failed Incomplet

Tasks 6 0 0
Jobs 19 0 0

Sub

Workflows 0 0

[

Type Succee ded Failed Incomplet

Tasks 1268 0 0
Jobs 277 0 0 277 0

Sub

Workflows 0 0 < 0

Acknowledgments:

Pegasus WMS is funded by the National Science Foundation OCI SDCI program grant #1148515.

HTCondor : Miron Livny, Kent Wenger, University of Wisconsin Madison

http://pegasus.isi.edu

THE UNIVERSITY

USC Viterbi

School of Engineering

